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From Witt rings of rings

to Witt groups of exact categories with duality



A sheaf of algebras OX on a topological space X is an assignment of an algebra OX(U) called
a local section to each open set U in X, together with, for each inclusion U �V , a restriction
homomorphism resV ;U

OX :OX(V )!OX(U) such that:

i. resU;U
OX = idU;

ii. if U �V �W , then resV ;U
OX � resW;V

OX = resW;U
OX ;

iii. for each open cover fUij i2 Ig of U �X and for each collection of elements fi2OX(Ui),
i2 I, if:

resUi;Ui\Uj
OX (fi)= resUj;Ui\Uj

OX (fj);

for all i; j 2 I, then there is a unique f 2OX(U) such that:

fi= resU;Ui
OX (f);

for all i2 I .



A structure which only satis�es conditions i. and ii. will be called a presheaf.

In particular, we de�ne in this way sheafs of groups, sheafs of rings, sheafs of modules etc.

A topological space equipped with a sheaf of rings is called a ringed space.



Example 1. Let M be a smooth manifold i.e. a topological space M equipped with a maximal
di�erentiable atlas. Then, for each open set U of M , the set C(U) of real-valued continuous
functions on U with point-wise addition and multiplication is a ring. If V �U then the restriction
homomorphism C(U)!C(V ) is given by actually restricting functions. It is easy to verify that
this is indeed a sheaf: it is one of the prototypical examples that shall serve as a basis for much
of the intuition.



We think of elements of OX(U) as �functions� de�ned on U . With this intuition axioms of a
sheaf can be understood in the following sense:

� restricting a function to its original domain does nothing;

� restricting and then restricting again is the same as restricting all at once;

� if we have two functions de�ned on some di�erent open sets, and these functions agree on
the overlaps, then we can glue them together to get a unique new function on the union
of these open sets, and if we restrict this glueing back to one of the open sets, we get the
corresponding function back.



Let X be a topological space and OX a sheaf of algebras on X. Let x2X be a point. A stalk
of OX at x is the set

OX;x= f(U ; f)jx2X; f 2OX(U)g/�

where the relation � is de�ned as follows:

(U ; f)� (V ; g) , there is an open set W �U \V such that f �W =g �W

By abuse of the notation we shall often denote (U ; f) in OX;x by fx or even f . Also, we will
say f = g in OX;x for two local sections of OX de�ned in an open neighborhood of x to denote
that they have the same image in OX;x.



Example 2. Let X = Rn with the Euclidean topology and de�ne the sheaf of C1 functions
by taking as C1(U) the set of all C1-functions f :U!R. Let x2Rn. An element of a stalk
CX;x
1 is de�ned by a function f whose domain contains x. Two functions determine the same

element in this stalk if they agree on a neighborhood of x. The stalk CX;x
1 is what analysts call

the germ of a C1-function at x.



The canonical map OX(U)!
Q

x2UOX;x, for each open subset U of X given by

f 7!
Y
x2U

(U ; f)

is injective.

� A.J. de Jong, Stacks Project, Chapter 6 �Sheaves on spaces�, Section 11 �Stalks�,
https://stacks.math.columbia.edu/tag/0078



Let X be a topological space, and OX ;OX0 be two sheaves of algebras on X. Then a morphism
':OX!OX0 is a collection of homomorphisms of algebras ':OX(U)!OX0 (U), one for each
open set U �X, which commute with the restriction maps i.e. if V � U �X are open sets,
then the following diagram commutes:

'(U)

resU;V
OX resU;V

OX0
OX(U)

OX0 (V )OX(V )

OX0 (U)

'(V )



Proposition 3. A sheaf on a topological space X is completely determined by its values on
basic open sets.

� J.-P. Serre, FAC (Faisceaux Algebriques Coherents), Proposition I.1.4.4. English translation
(with a lot of background material) by Andy McLennan, https://andymclennan.drop-
pages.com/fac_trans.pdf

� A.J. de Jong, Stacks Project, Chapter 6 �Sheaves on spaces�, Section 30 �Bases and sheaves�,
https://stacks.math.columbia.edu/tag/009H



Example 4. Let R be a commutative ring with 1. We de�ne the Zariski topology on Spec(R)
by declaring basic open sets to be:

Spec(R)f = fp2 Spec(R)j f 2/ pg;

for f 2R. The structure sheaf of Spec(R) is the sheaf de�ned by

OSpec(R)(Spec(R)f)=Rf

and for Spec(R)f � Spec(R)g the restriction resSpec(R)g;Spec(R)f
OSpec(R) : Rg ! Rf is the induced

homomorphism of R-algebras.



When we think of elements of R as functions on Spec(R) we mean f(p) to be the image of
f 2R under the canonical map

R!R/p!�(R/p)

This, however, is not very rigorous, as we do not always yield an actual function: take R = Z
and f =7 � then f(h2i)= 1 in Z2 and f(h5i)= 2 in Z5, so these values lie in di�erent �elds.

The ringed space (Spec(R);OSpec(R)) is called an a�ne scheme.



A scheme is a ringed space (X;OX) which is locally a�ne in the following sense: there exists
an open covering fUij i2Ig of X such that the restriction of OX to each Ui is an a�ne scheme.



For a ringed space (X;OX), an OX-module (or a sheaf of OX-modules) is a sheaf of modules
M over the topological space X such that for each open set U of X, M(U) is an OX(U)-
module and the restrictions in M are compatible with the restrictions in OX in the following
sense: for each inclusion U �V :

resV ;UM (a�m)= resV ;U
OX (a)�resV ;UM (m);

for a2OX(U), m2M(U).



For a scheme (X;OX) a vector bundle is an OX-module E which is locally free of �nite rank,
that is, for every point x2X, there exists an open neighbourhood U of x such that E(U) is an
OX(U)-module isomorphic to the OX(U)-module (OX(U))nx, for some nx 2N. We call nx
the local rank of E at x, and the locally constant function x 7!nx on X the rank rk E of E .



Remark 5. This is not the most general de�nition, but one tailored to our needs. Proper
de�nitions are to be found in:

� J. Dieudonne, A. Grothendieck, EGA I (Elements de geometrie algebrique I), De�nition 1.7.8

� A.J. de Jong, Stacks Project, Chapter 27 �Constructions of Schemes�, Section 6 �Vector
bundles�, https://stacks.math.columbia.edu/tag/01M1



Example 6. Let R be a commutative ring with 1 and (Spec(R);OSpec(R)) the a�ne scheme.

Every vector bundle E on (Spec(R);OSpec(R)) is canonically isomorphic to the R-module E(X)
(EGA I , Section 1.4) i.e. the category of vector bundles over (Spec(R);OSpec(R)) is equivalent
to the category of �nitely generated projective modules over R.



For a scheme (X;OX) a symmetric bilinear form � on a vector bundle E is a morphism �:
E �E!OX in the category of sheaves over X such that for every open set U in X the map

�(U): E(U)�E(U)!OX(U)

is a symmetric bilinear form of the OX(U)-module E(U).



For a scheme (X;OX) and a vector bundle E we de�ne the dual vector bundle E� as follows:
for every open set U inX, E�(U) is the set of OX(U)-module homomorphisms E(U)!OX(U).
One checks that this is, indeed, a vector bundle.



For a scheme (X;OX) and a symmetric bilinear form � on a vector bundle E , for each open set
U in X the form � de�nes a map E(U)!E�(U) in a natural way by assigning E(U)3u 7! �(u;
�) 2 E�(U). These maps together constitute a homomorphism ' from a bundle E to E�. We
call � non-degenerate if ' is an isomorphism.



A pair (E ; �) consisting of a vector bundle E and a symmetric bilinear form � will be called a
bilinear bundle.

If � is non-degenerate, we will call (E ; �) a bilinear space.



A morphism between bilinear bundles ': (E1; �1)! (E2; �2) is a morphism of vector bundles
': E1!E2 such that, for each open set U in X:

�2(U)('(U)(u); '(U)(v))= �1(U)(u; v);

for each u; v 2E1(U).



For a scheme (X;OX) and bilinear bundles (E1; �1), (E2; �2) we de�ne the orthogonal sum
(E1�E2; �1� �2) as follows: the OX-module E1�E2 is the sheaf such that for each open set
U in X:

E1�E2(U)= E1(U)�E2(U);

and �1� �2: E1�E2�E1�E2!OX is the morphism such that for each open set U in X :

�1� �2(U)(u1�u2; v1� v2)= �1(U)(u1; v1)+ �2(U)(u2; v2);

for u1; v12E1(U) and u2; v22E2(U).



Assigning for an open subset U in X the module E1(U)
OX(U)E2(U) does not neccesarily yield
a sheaf � we only get a presheaf, which needs to undergo a shea��cation. We shall brie�y
describe this process.



Let X be a topological space and OX a presheaf. For every open subset U of X de�ne

OX
#(U)=

(
(fx)2

Y
x2U

OX;xj (fx) satis�es the condition (*)

)

where the condition (*) is the following one:

for every x 2U there exists an open neighborhood x 2 V �U and g 2OX(V )
such that for all y 2V we have fy=(V ; g) in OX;y

The presheaf OX
# is, in fact, a sheaf called the shea��cation of OX.

� A.J. de Jong, Stacks Project, Chapter 6 �Sheaves on spaces�, Section 17 �Shea��cation�,
https://stacks.math.columbia.edu/tag/007X



In particular, the tensor product of two bundles E1 and E2 is the shea��cation of the presheaf
E1(U)
OX(U) E2(U) denoted by E1
E2.

If U is an a�ne open subset in X, then

E1
E2(U)= E1(U)
OX(U) E2(U)

� Q. Liu, Algebraic geometry and arithmetic curves, Oxford University Press 2002, Proposition
5.1.12 (b)



For a scheme (X; OX) and bilinear bundles (E1; �1), (E2; �2) we de�ne the tensor product
(E1
E2; �1
 �2) by de�ning �1
 �2: E1
E2�E1
E2!OX as the unique morphism such
that for each open set U in X:

�1
 �2(U)(u1
u2; v1
 v2)= �1(U)(u1; v1)��2(U)(u2; v2);

for u1; v12E1(U) and u2; v22E2(U).



For any modules M; N we have (M � N)� =� M� � N�, so that for bilinear bundles (E1;
�1),(E2; �2) we have (E1 � E2)� =� E1� � E2�, and if '1; '2 denote the homomorphisms
E1 3 u 7! �1(u; �) 2 E1�, E2 3 v 7! �2(v; �) 2 E2� de�ned by �1; �2, respectively, then �1 � �2
corresponds to the homomorphism�

'1 0
0 '2

�
: E1�E2!E1��E2�:



For �nitely generated projective modules M; N we also have (M 
N)�=�M�
N�, so that
for bilinear bundles (E1; �1),(E2; �2) we have (E1 
 E2)� =� E1�
 E2�, and if '1; '2 denote the
homomorphisms E13 u 7! �1(u; �)2 E1�, E23 v 7! �2(v; �)2 E2� de�ned by �1; �2, respectively,
then �1
 �2 corresponds to the homomorphism

'1
 '2: E1
E2!E1��E2�:

� K. Szymiczek, Witt ring of a commutative ring



A category with duality is a triple (C ;�; !�) made of category C, an involutive endo-functor
�: Cop! C with given isomorphism !�: IdC!!!!!!!!!!!!!!

=� ��� such that M 7!M� is a functor and !�
M
:

M !!!!!!!!!!!!!!=
�

(M�)� is a natural isomorphism such that

(!�M)
� �!�M�= idM�

for any object M of C.



A symmetric space in (C ;�; !�) consists of a pair (P ; '), where P is an object in C, and ':
P !!!!!!!!!!!!!!=

�
P � is an isomorphism called symmetric form which is symmetric in the following sense:

'� �!�P = '

i.e. '�= ' when P is identi�ed with P �� via !�P .



Example 7. Let X be a scheme, C the category of vector bundles in X , �: C ! C the duality
de�ned by

E�=HomOX(E;OX)

and !�:E!!!!!!!!!!!!!!=
�
E�� the natural identi�cation de�ned in the usual way.



Example 8. Let X be a scheme, L a �xed line bundle in X , i.e. a vector bundle of rank 1, C
the category of vector bundles in X, �:C!C the usual duality twisted by the line bundle L, i.e.

E�=HomOX(E;L)=�HomOX(E;OX)
OXL

and !� de�ned in the usual way. For L=OX we get the usual dual.

� M. Zibrovius, Witt groups of curves and surfaces



Two symmetric spaces (P ; ') and (Q;  ) are isometric if there exists an isomorphism h:

P !!!!!!!!!!!!!!=
�

Q in the category C such that

h� h= '

(note that h�:Q�!P � is given by h�(�)= � �h).



Amorphism of categories with duality (C ;�C ;!�C)! (D;�D;!�D) consists of a pair (F ; �) where
F : C!D is a functor and �:F � �C!!!!!!!!!!!!!!=

�
�D �F is an isomorphism respecting !� i.e. making the

following diagram commutative:

F (!�M
C )

!�F (M)
D �M�

F (M)

F (M�)�F (M��)

F (M��)

�M
�



An additive category is a category where:

� hom-sets are Abelian groups,

� composition of morphisms is bilinear,

� �nite biproducts (i.e. simultaneously products and coproducts, denoted �) exist.



Example 9. Abelian groups (addition of morphisms is given point-wise, biproducts are direct
sums), modules over rings, vector bundles over a scheme.



An additive category with duality is a category with duality, where � is an additive functor,
i.e. (A�B)�=A��B� via the natural isomorphism.

A morphism of additive categories with duality is a morphism F of categories with duality such
that F is also additive.



For a scheme (X;OX) and a vector bundle E assume that for exery open set Z in X there is
an OX(Z)-submodule V(Z) of E(Z), and that for open subsets Z 0 � Z the restriction map
resZ;Z 0E : E(Z)!E(Z 0) maps V(Z) to V(Z 0). If the functor V : Z!V(Z) on the category of
open subsets of X ful�lls the sheaf condition, we call V an OX-submodule of E .



An OX-submodule is called a subbundle if V is locally a direct summand of E , that is:

E(Z)=�V(Z)�W

for every open subset Z of X .

Note that for a subbundle V the quotient E /V (de�ned in an obvoius way) is again a vector
bundle (direct summands of locally free OZ-modules of �nite rank are locally free of �nite rank).



For a subbundle V of a bilinear bundle (E ; �) we de�ne V? as follows: for an open set Z of X let:

V?(Z)= fs2E(Z)j 8t2V(Z 0)�(Z 0)(s; t)= 0 for every open subset Z 0�Zg:

Proposition 10. V?(Z) = ker
�
E(Z)!!!!!!!!!!!!' E(Z)�!!!!!!!!!!!!!!�

�

V(Z)�
�
, where �: V(Z)! E(Z) is the

inclusion map, i.e. �� is the restriction of linear maps E(Z)!OX(Z) to V(Z)!OX(Z).



A totally isotropic subbundle or a sublagrangian of E is a subbundle such that V �V?.



For a bilinear bundle (E ; �) consider the vector bundle E �E�. For every open subset Z of X ,
for s; t2E(Z), s�; t�2E(Z)� let

B(s+ s�; t+ t�)= �(s; t)+ t�(s)+ s�(t)

This is a bilinear form, and its associated homomorphism ': E �E�! (E � E�)�= E��E has
matrix �

' id
id 0

�

We denote the space (E �E�; B) by M(E ; �) and call split metabolic.



In particular, when �=0, we call M(E ; 0) hyperbolic and denote H(E).

A subbundle V is called a lagrangian if V =V?

A space which has a lagrangian is called metabolic.



Clearly:

hyperbolic ) split metabolic ) metabolic

For �elds split metabolic ) hyperbolic.

This is no longer true for rings (take

�
Z2;

�
0 1
1 1

��
and see Prof. Szymiczek's notes for details).

One shows that for a�ne schemes metabolic ) split metabolic (see Knebusch)

This is no longer true for non-a�ne schemes (see Knus-Ojanguren for an example)



An exact category is an additive category C that contains a distinguished class E of triples of
objects and arrows

M 0!M!M 00

such that

i. E is closed under isomorphisms and contains all triples of the form

M 0!M 0�M 00!M 00

ii. if M!M 00 is a secons arrow in a triple (i.e. it is an admissable epimorphism) andN!M 00

is any arrow, then their pullback is again an admissable epimorphism

iii. if M 0!M is a �rst arrow in a triple (i.e. it is an admissable monomorphism) andM 0!N
is any arrow, then their pushout is again an admissable monomorphism

iv. admissable monomorphisms are kernels of their corresponding admissable epimorphisms

v. admissable epimorphisms are cokernels of their corresponding admissable monomorphisms

vi. composition of admissable monomorphisms (epimorphisms) is an admissable monomorphism
(epimorphism)

� D. Quillen, Higher algebraic K-theory , Springer, 1972

� B. Keller, Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379-417

Basic idea: encapsulate the concept of short exact sequences in abelian categories without the
morphisms actually having kernels and cokernels.



An exact functor is one that sends admissable triples to admissable triples.

An exact category with duality is an additive category with duality such that the functor � is
exact.



Let (E ; �; !�) be an exact category with duality, let (P ; ') be a symmetric space in E , let �:
L�P be an admissable monomorphism. De�ne

(L; ')?= ker
�
P !!!!!!!!!!!!' P �!!!!!!!!!!!!!!!!!!�

�

L�
�



An admissable sublagrangian of a symmetric space (P ; ') is an admissable monomorphism
�:L!P such that ' vanishes on L and the induced monomorphism �:L!L? is admissable.

An admissable lagrangian is when L=L? and � is an isomorphism.

A symmetric space is metabolic if it has an admissable lagrangian.



For an exact category with duality (E ; �; !�) denote by MW(E ; �; !�) the set of isometry classes
of symmetric spaces, and by NW(E ; �; !�) the subset of classes of metabolic spaces. The Witt
group of (E ; �; !�) is the quotient

W (E ; �; !�)=MW(E ; �; !�)
NW(E ; �; !�)

in the sense explained by the following Remark.



Remark 11. Let (M;+) be an Abelian monoid, and N �M a submonoid. For m1; m2 2M
de�ne

m1�m2,9n1; n22N [m1+n1=m2+n2]

Then� is an equivalence, and the set of equivalence classesM /N inherits a structure of Abelian
monoid via

[m1] + [m2] = [m1+m2]

If for any element m2M there is an element m02M such that m+m02N , thenM /N is an
Abelian group with ¡[m]= [m0]. It is canonically isomorphic to the quotient of the Grothendieck
group of M by the subgroup generated by N .


