

List 4: Applications of Greither-Pareigis theorem

1. Let L/K be a (G, G') -separable Hopf-Galois extension and let N_1, N_2 be regular and G -stable subgroups of $\text{Perm}(G/G')$. Consider the action $*$ of G on N_1 and N_2 defined as conjugation by $\lambda(G)$. Show that $N_1 \cong N_2$ as G -groups (that is, there is a G -equivariant group isomorphism between them) if and only if $\tilde{L}[N_1]^G \cong \tilde{L}[N_2]^G$ as K -Hopf algebras.
2. Two Hopf-Galois structures (H, \cdot) , (H', \cdot') on the same field extension L/K are said to be isomorphic if there is an isomorphism of K -Hopf algebras $f: H \rightarrow H'$ such that $h \cdot \alpha = f(h) \cdot' \alpha$. In practice, isomorphic Hopf-Galois structures on L/K are considered as the same Hopf-Galois structure (for instance, in the Greither-Pareigis theorem).
 - (a) Let L/K be a Galois extension with group G . Prove that the classical Galois structure on L/K and the Hopf-Galois structure corresponding to $\rho(G)$ under the Greither-Pareigis correspondence are isomorphic.
 - (b) Give an example of separable Hopf-Galois extension L/K and different (non-isomorphic) Hopf-Galois structures H and H' on L/K such that $N \cong N'$, where N (resp. N') is the permutation subgroup corresponding to H (resp. H').
3. Let L/K be a Galois extension with group G and let N be a regular and G -stable subgroup of $\text{Perm}(G)$. Show that for each $\varphi \in \text{Aut}(G)$, $(\varphi \circ N \circ \varphi^{-1})^{\text{opp}} = \varphi \circ N^{\text{opp}} \circ \varphi^{-1}$.
4. Let L/K be a Galois extension with group G . For each regular and G -stable subgroup N of $\text{Perm}(G)$ and each $g \in G$, call $N_g := \rho(g)N\rho(g^{-1})$. Two Hopf-Galois structures on L/K corresponding to permutation subgroups N, N' are said to be ρ -conjugate if $N' = N_g$ for some $g \in G$. Fix such a subgroup N of $\text{Perm}(G)$ and $g \in G$.
 - (a) Prove that N_g is indeed a regular and G -stable subgroup of $\text{Perm}(G)$.
 - (b) Show that the map $\phi: L[N]^G \rightarrow L[N_g]^G$ defined by $\phi(\sum_{\eta \in N} c_\eta \eta) = \sum_{\eta \in N} c_\eta \rho(g)\eta\rho(g^{-1})$ is an isomorphism of K -Hopf algebras.
 - (c) Prove that $N_g^{\text{opp}} = (N^{\text{opp}})_g$.
5. Prove that every separable field extension of degree at most 4 is almost classically Galois.
6. Let L/K be a (G, G') -separable almost classically Galois extension and let J be a normal complement for G' in G . Write $*$ for the action of G on $M[J]$ defined as the Galois action on M and the conjugation by G on J . Show that if J is abelian, then there is an isomorphism of Hopf-Galois structures between

$$M[J]^{G'} = \{h \in M[J] \mid \tau * h = h \text{ for all } \tau \in G'\}$$
 together with its classical action on L and the Hopf-Galois structure on L/K corresponding to $\lambda(J)$.
7. Consider the extension L/K at Example 2.5.7. Determine explicitly the Hopf-Galois structure associated to the permutation subgroup $N = \langle (\overline{1}_G, \overline{\sigma}, \overline{\sigma^2}, \overline{\sigma^3}) \rangle$.
8. Let E/K be a Galois extension with group of the form $J \times G'$ and call $L = E^{G'}$. Prove that the classical Galois structure on E/K is the induced Hopf-Galois structure from the classical Galois structures on E/L and L/K .