
Chapter 1

Preliminaries on Galois theory and
Hopf algebras

1 Field theory and Galois theory

Field theory is motivated by the study of algebraic equations and their solutions,
or equivalently, the study of polynomials and their roots. The easiest example is
that of a second degree polynomial

ax2 + bx + c, a, b, c ∈ Q

for which the expression

x =
−b±

√
b2 − 4ac

2a
(1.1)

provides its two roots. If b2 − 4ac is not the square of an integer, these roots are
not rational numbers, but in any case they they lie in a field properly containing
Q. The usual situation is that an equation with coefficients in a field K has its
solutions in a bigger field L. This is why the basic notion in field theory is that of
extensions of fields.

Definition 1.1.1. An extension of fields is a pair (L, K) where L and K are fields such
that there is a ring monomorphism (or embedding) ι : K ↪→ L. We will say that L/K is
an extension of fields (or simply an extension) or that L is a field extension of K.

Typically, the embedding ι : K ↪→ L will be just the inclusion, which corre-
sponds to the situation in which K ⊆ L. For convenience, and unless specified
otherwise, we will always assume we are in this situation.

1.1 Finite and algebraic extensions

If L/K is an extension of fields, L is naturally endowed with K-vector space struc-
ture.

Definition 1.1.2. Let L/K be an extension of fields.

1. The degree of L/K, denoted by [L : K], is defined as the dimension of L as a K-vector
space.
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2. We say that L/K is finite if its degree [L : K] is finite.

3. We say that L/K is quadratic (resp. cubic, resp. quartic) if [L : K] = 2 (resp.
[L : K] = 3, resp. [L : K] = 4).

Example 1.1.3. 1. C/Q and R/Q are extensions of fields with infinite degree.

2. C/R is a quadratic field extension, since C has basis {1, i} as an R-vector
space.

When we have fields L, E and K such that K ⊆ E ⊆ L, we will say that E is an
intermediate field of the extension L/K.

Proposition 1.1.4 (Multiplicativity of degrees). Let E be an intermediate field on
L/K. The extension L/K is finite if and only if so are L/E and E/K. In that case,

[L : K] = [L : E][E : K]

Among the real numbers, we usually distinguish between rationals and ir-
rationals. But also, among the irrational numbers, there are those that are roots
of polynomials with rational coefficients (such as those expressed by radicals),
which are called algebraic, and those that do not enjoy this property (like e or π),
called transcendental. More generally:

Definition 1.1.5. Let L/K be an extension of fields.

1. We say that α ∈ L is algebraic over K if it is a root of some non-zero polynomial
f ∈ K[X]. Otherwise, we will say that α is transcendental.

2. We say that L/K is algebraic if all elements of L are algebraic over K.

There is the following basic result.

Proposition 1.1.6. Any finite field extension is algebraic.

The converse does not hold in general. For instance, the field of complex
algebraic numbers over Q is an algebraic extension of Q that is not finite.

1.2 Subfield generated by a subset

We can construct easily finite extensions of fields from a field K and a subset of a
field extension L of K.

Definition 1.1.7. Let L/K be an extension of fields and let S be a subset of L. The
subfield of L generated by K and S, denoted by K(S), is defined as the intersection of all
subfields of L containing K of S.

The subfield of L generated by K and S can also be seen as the minimal sub-
field of L containing both K and S.

Suppose that S = {α1, . . . , αn}. It is routine to check that

K(S) =
{ f (α1, . . . , αn)

g(α1, . . . , αn)
: f , g ∈ K[X1, . . . , Xn], g(α1, . . . , αn) ̸= 0

}
.

We will also denote K(S) ≡ K(α1, . . . , αn).
When the elements of S are algebraic, then K(S) is actually the minimal sub-

ring of L containing both K and S. Thus, in order to describe the elements of K(S),
it is enough to consider polynomial expressions of the elements of S.
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Proposition 1.1.8. Let L/K be a field extension and let S = {α1, . . . , αn} ⊂ L be a set
of algebraic elements over K. Then

K(S) =
{

f (α1, . . . , αn) : f ∈ K[X1, . . . , Xn]
}

.

Example 1.1.9. 1. Let f (x) = x2 + ax + b with a, b ∈ Q be a monic quadratic
polynomial and let α be a root of f , that is,

α ∈
{−a +

√
a2 − 4b

2
,
−a−

√
a2 − 4b

2

}
.

It can be easily checked that Q(α) = Q(
√

a2 − 4b). Now, since
√

a2 − 4b is
algebraic,

Q(
√

a2 − 4b) = {x + y
√

a2 − 4b | x, y ∈ Q}.

As a Q-vector space, this has Q-basis {1,
√

a2 − 4b}. Therefore, Q(α)/Q is a
quadratic extension of Q.

2. Let L = Q(
√

3,
√

5). Since
√

3 and
√

5 are algebraic,

L = {a + b
√

3 + c
√

5 + d
√

15 | a, b, c, d ∈ Q}.

We see that {1,
√

3,
√

5,
√

15} is a Q-basis of L, so L/Q is a quartic extension.

3. The field Q(π) is the subfield of R generated by Q and π. It is not algebraic
over Q, since π is transcendental.

Normally, in field theory, to verify a property in an extension K(S)/K, it is
enough to verify it for S. This is the case for the algebraic property.

Proposition 1.1.10. Let L/K be an extension of fields and let S ⊆ L be such that L =
K(S). If all the elements of S are algebraic over K, then L/K is an algebraic extension.

1.2.1 Simple and finitely generated extensions

Definition 1.1.11. Let L/K be an extension of fields.

1. We say that L/K is simple if there is some α ∈ L such that L = K(α). In that case,
we will say that α is a primitive element of L/K.

2. We say that L/K is finitely generated if there are α1, . . . , αn ∈ L such that L =
K(α1, . . . , αn).

Before, we saw that every finite extension is algebraic but the converse does
not hold. In fact, the notion of finite generation provides a characterization.

Proposition 1.1.12. An extension of fields L/K is finite if and only if it is algebraic and
finitely generated.

In particular, if L/K is finite, then it is finitely generated, but the converse in
general does not hold (the extension Q(π)/Q above serves as a counterexample).
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1.2.2 The compositum of fields

Let L/K be an extension of fields and let E and F be intermediate fields of L/K.
In Definition 1.1.7, we may take E as ground field and S = F, so that E(F) is the
minimal subfield of L containing both E and F. Now, changing the roles of E and
F, F(E) is also the minimal subfield of L containing both E and F, so E(F) = F(E).

Definition 1.1.13. Let K be a field with algebraic closure K. Let E and F be two ex-
tensions of K contained in K. The compositum of E and F is the minimal subfield of K
containing both E and F.

If E = K(α1, . . . , αn) and F = K(β1, . . . , βm), then

EF = K({αiβ j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}).

1.3 Minimal polynomial of an element

Let L/K be an algebraic extension and fix α ∈ L. Let us consider the map

Φα : K[X] −→ L
f (X) 7−→ f (α) .

It is a ring homomorphism with kernel

Ker(Φα) = { f ∈ K[X] | f (α) = 0}.

Recall that K[X] is a principal ideal domain (PID). Then, Ker(Φα) is a principal
ideal, that is, it is generated by a single polynomial. If f is such a generator and
u ∈ K×, then u f is another generator. If we multiply by the inverse of the leading
coefficient of f , we obtain a monic polynomial, which is the only monic generator
of Ker(Φα).

Definition 1.1.14. Let L/K be an algebraic extension and let α ∈ L. The minimal
polynomial of α over K, denoted by min.poly.(α, K), is the monic generator of Ker(Φα).

The minimal polynomial of α over K is equivalently defined as the monic
polynomial in K[X] with minimal degree having α as a root, and therefore it is
irreducible over K. Its degree is actually the degree of K(α):

Proposition 1.1.15. Let L/K be an extension and let α ∈ L be an algebraic element over
K. Then, K(α)/K is a finite extension and

[K(α) : K] = deg(min.poly.(α, K)).

Moreover, calling n := [K(α) : K], {xi}n−1
i=0 is a K-basis of K(α).

We say that any two roots of the same minimal polynomial are conjugate.
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1.4 Embeddings, isomorphisms and automorphisms of fields

In our context, an embedding is nothing but an injective homomorphism (i.e, a
monomorphism) of fields τ : L ↪→ E. Note that the requirement of injectivity is
equivalent to σ being non-trivial, since its kernel is either 0 or L.

Definition 1.1.16. Let τ : L ↪→ E be an embedding and let K be a subfield of L. If
τ(x) = x for all x ∈ K, we will say that τ is a K-embedding.

Following the usual terminology, a bijective K-embedding is a K-isomorphism.
Two fields are said to be K-isomorphic if there exists a K-isomorphism between
them. A K-automorphism is a K-isomorphism τ : L −→ L. The group of K-
automorphisms of L will be denoted by AutK(L).

Definition 1.1.17. Let σ : K ↪→ E and τ : L ↪→ E be two embeddings. We say that τ is
an extension of σ if K ⊆ L and τ |K= σ.

Theorem 1.1.18. Let L/K be an algebraic extension, and let E be a field such that there
is an embedding σ : K ↪→ E. Let S ⊆ L be such that L = K(S). If all the polynomials in
{min.poly.(α, K) | α ∈ S} have all their roots in L, there is some embedding τ : L ↪→ E
that extends σ.

1.5 Splitting fields and algebraic closure

As already mentioned, a quadratic polynomial with rational coefficients may not
have its roots in Q, which is in fact the usual situation. Instead, its roots lie in a
quadratic field. More generally:

Theorem 1.1.19 (Fundamental theorem of algebra). The roots of a polynomial with
coefficients in the field C of complex numbers lie in C.

Some people say the name of this theorem is unfortunate: it is not fundamental,
nor it is of algebra. In our case, it provides an illustration of the concepts we
consider in this part.

Definition 1.1.20. We say that a field K is algebraically closed if every polynomial with
coefficients in K has all its roots in K.

The fundamental theorem of algebra just states that C is algebraically closed.
Actually, there is a smaller field that is algebraically closed; namely, the field of
complex algebraic numbers. Since it is algebraic over Q, it is obtained from ad-
joining to Q the roots of all polynomials with rational coefficients. This is what
we call an algebraic closure of Q. In general:

Definition 1.1.21. An algebraic closure of a field K is an algebraically closed field L such
that L/K is an algebraic extension.

Theorem 1.1.22 (Steinitz). A field K possesses an algebraic closure and it is unique up
to K-isomorphism.

In particular, if f has its coefficients in a subfield K of the field of algebraic
numbers, all its roots are algebraic numbers. In general, for any other field, we
can find an extension with this property.
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Proposition 1.1.23. Let K be a field. There is a field extension L of K such that every
polynomial f ∈ K[X] has all its roots in L.

This allows us to make the following definition.

Definition 1.1.24. Let L/K be an extension of fields. Let F ⊆ K[X] and let S be the
set of the roots of all polynomials in F . We say that L is a splitting field of F over K if
L = K(S).

Note that if we choose F = K[X], we recover the notion of algebraic closure.
As in that case, the splitting field always exists and is essentially unique.

Proposition 1.1.25. Let K be a field and let F ⊆ K[X] be a subset of non-constant poly-
nomials. Then, there is a splitting field of F over K and it is unique up to K-isomorphism.

Example 1.1.26. The polynomial f (x) = x4− 2 has roots ± 4
√

2, ±i 4
√

2, so its split-
ting field over Q is Q( 4

√
2, i).

1.6 Normal extensions

The class of normal extensions is fundamental in order to understand the notion
of Galois extension. It is defined as follows.

Definition 1.1.27. Let L/K be an algebraic extension and let L be an algebraic closure
of L. We say that L/K is normal if for every K-embedding σ : L −→ L we have that
σ(L) = L (equivalently, σ ∈ AutK(L)).

In other words, the normal extensions of K are those that are invariant under
K-embeddings, which turn out to be K-automorphisms. There are many charac-
terizations for normality, but we will just stand with this one.

Proposition 1.1.28. Let L/K be an algebraic extension. Then L/K is normal if and only
if for every polynomial f ∈ K[X] with some root in L, f possesses all its roots in L.

The explanation lies in the fact that the image of a root of a polynomial f ∈
K[X] by an embedding σ : L −→ L is necessarily a root of f . Moreover:

Proposition 1.1.29. Let L/K be a normal extension and let α, β ∈ L be elements with the
same minimal polynomial over K. Then, there is some σ ∈ AutK(L) such that σ(α) = β.

Example 1.1.30. 1. Every quadratic extension L/K is normal. Indeed, there is
n ∈ K such that L = K(

√
n), and given an embedding σ : L −→ L, we have

σ(
√

n) = −
√

n, so σ(L) = L.

2. Let α = 3
√

2 be the real root of x3 − 2. Then Q(α)/Q is not normal, because
ζ3α is another root of x3 − 2, where ζ3 = −1+

√
−3

2 , and ζ3α /∈ Q(α).

It is not true that the class of normal extensions is transitive, that is, for fields
K ⊆ E ⊆ L, it may happen that L/K is normal but E/K is not. However, we have
the following result.

Proposition 1.1.31. Let K, L and E be fields with K ⊆ E ⊆ L. If L/K is normal, then
so is L/E.
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There is a notion of normal closure.

Definition 1.1.32. Let L/K be an algebraic extension. We say that a normal extension N
of K containing L is a normal closure of L/K if it is the smallest extension of K with this
property. More accurately, for every normal extension N′/K and every K-embedding
σ : L ↪→ N′ there is some K-embedding τ : N ↪→ N′ making the following diagram
commutative:

L �
� //

σ   

N

τ
��

N′

In these notes, we will usually write L̃ for the normal closure of a field exten-
sion L/K. The following result provides a method to find a normal closure, and
in particular, it proves its existence.

Proposition 1.1.33. Let L/K be an algebraic extension and let S ⊆ L be such that L =
K(S). A normal closure of L/K is the splitting field of F = {min.poly.(α, K) | α ∈ S}
over K.

As in the case of the algebraic closure, the uniqueness is up to K-isomorphisms.

Proposition 1.1.34. The normal closure of an algebraic extension L/K is unique up to
K-isomorphism.

Example 1.1.35. 1. If L/K is a normal extension, its normal closure is L̃ = L.

2. Let L = Q(α) where α is the real root of x3 − 2. The other conjugates of α

are ζ3α and ζ2
3α. Therefore, the normal closure of L/Q is L̃ = Q(α, ζ3).

1.7 Separable extensions

The notion of separability for an extension is related with the (absence of) multi-
plicity of roots.

Definition 1.1.36. Let K be a field. We say that a polynomial f ∈ K[X] is separable if it
does not possess multiple roots in an algebraic closure of K.

Equivalently, a polynomial f ∈ K[X] is separable if it has no multiple roots in
any extension of K where f has all its roots (such as the splitting field of f over
K).

Definition 1.1.37. Let L/K be an algebraic extension of fields.

1. We say that an element α ∈ L is separable if min.poly.(α, K) is separable.

2. We say that L/K is separable if every element of L is separable.

As in the case of algebraic extensions, the class of separable extensions is tran-
sitive.

Proposition 1.1.38. Suppose that L, K, E are fields with K ⊆ E ⊆ L. Then L/K is
separable if and only if L/E and E/K are separable.
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For a polynomial f with coefficients in a field K, let us write f ′ for the formal
derivative of f . Then, f has no multiple roots in an algebraic closure if and only
if f and f ′ have no common factors other than constants.

Definition 1.1.39. A field K is said to be perfect if every algebraic extension of K is
separable.

Recall that the characteristic of a field K, denoted char(K), is the smallest non-
negative integer n such that n1 = 0, and it is either 0 (if there is no such an n) or
a prime p.

Proposition 1.1.40. Fields with characteristic zero and finite fields are perfect.

We finish the section with the following important theorem.

Theorem 1.1.41 (Primitive element theorem). A finite and separable extension is sim-
ple, that is, it admits some primitive element.

Since Q has characteristic zero, every algebraic extension of Q is separable. In
particular, every finite extension of Q is simple.

1.8 Galois extensions

Given a polynomial f ∈ K[X], we would be happy with a formula as (1.1): an
expression that provides all its roots after a finite number of calculations. This is
also the situation with degree 3 and 4 equations, but from degree 5 on it does not
hold in general. A characterization for the existence of such an expression was
found by Galois, whose main idea was to study the permutations of the roots that
preserve the algebraic operations between them. In the modern language, these
are the automorphisms of the field generated by Q and the roots. His findings
motivated the development of the so called Galois theory.

Definition 1.1.42. Let L/K be an extension of fields. We say that L/K is Galois if it is
normal and separable.

Note that joining Propositions 1.1.31 and 1.1.38, we obtain:

Corollary 1.1.43. Let K, L and E be fields with K ⊆ E ⊆ L. If L/K is Galois, then so is
L/E.

We have seen that an algebraic extension L/K is normal if for every f ∈ K[X],
f has all its roots in L. On the other hand, L/K is separable if for every f ∈ K[X],
the roots of f in an algebraic closure are all different. We deduce:

Corollary 1.1.44. Let L/K be a finite Galois extension of degree n. Then L/K possesses
n different embeddings, all of which are K-automorphisms.

It is the group of these K-automorphisms what we define as the Galois group.

Definition 1.1.45. Let L/K be a Galois extension. The Galois group of L/K, denoted
Gal(L/K), is defined as the group of K-automorphisms of L.
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For a Galois extension L/K with Galois group G, we will sometimes say that
L/K is G-Galois.

Note that for an extension L/K which is not Galois, it makes perfect sense
to consider the group of K-automorphisms of L. Sometimes, in literature, the
Galois group is defined as such regardless of whether the extension is Galois
or not. Even though this is not our choice, such a group can be used to give a
characterization for the Galois condition.

Proposition 1.1.46. Let L/K be an algebraic extension and let G = AutK(L). Denote

LG := {x ∈ L | σ(x) = x for all σ ∈ G}.

Then L/K is Galois if and only if LG = K.

The fact, observed by Galois, that the permutations of the roots preserving the
algebraic structure form a group, can be formulated in the modern language as
follows.

Theorem 1.1.47 (Galois). Let L/K be a degree n Galois extension with group G and
let f ∈ K[X] be a degree n irreducible polynomial with roots in L. Then G permutes
transitively the roots of f , so there is a group monomorphism G ↪→ Sn by which G maps
to a transitive group.

Remark 1.1.48. Suppose that S = {α0, . . . , αn−1} is the set of roots of f . If the
degree of L/K is a prime number p, then G is isomorphic to a transitive subgroup
of

{Πr,s | r, s ∈ Z, gcd(r, p) = 1},
where for each r, s ∈ Z with gcd(r, n) = 1, Πr,s is the permutation of the roots αi
defined by Πr,s(αi) = αri+s, where subscripts are considered mod p.

The utility of the Galois group is that it encodes information on the extension
to which it refers. For instance, we have the following facts, that are very useful
when one computes Galois groups.

Proposition 1.1.49. Let L/K be in the conditions of Theorem 1.1.47. Then, G embeds
into An if and only if its discriminant is the square of some element in K.

Recall that the discriminant of a polynomial f ∈ K[x] is defined as

disc( f ) = ∏
1≤i<j≤n

(αi − αj)
2,

where α1, . . . , αn are the roots of f .
A more important illustration of the above mentioned phenomenon is that the

subgroups of a Galois group are in bijective correspondence with the intermedi-
ate fields of the extension to which it refers. This result is commonly known as
the fundamental theorem of Galois theory.

Definition 1.1.50. Let L/K be a Galois extension with group G and let H be a subgroup
of G. The subfield of L fixed by H is defined as

LH = {α ∈ L : σ(α) = α for all σ ∈ H}.
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We will also denote the fixed subfield LH as Fix(L, H), or simply Fix(H) when
L is implicit in the context.

It is routine to check that a fixed subfield is actually a field.

Theorem 1.1.51 (Fundamental theorem of Galois theory). Let L/K be a finite Galois
extension. The following statements hold:

1. There is a bijective inclusion-reversing correspondence

{Subgroups of Gal(L/K)} −→ {Intermediate fields of L/K}
H 7−→ LH

Gal(L/E) ←− [ E

2. Given an intermediate field E of L/K, E/K is Galois if and only if Gal(L/E) is a
normal subgroup of Gal(L/K). In that case, the map

Gal(L/K) −→ Gal(E/K)
σ 7−→ σ |E

induces a group isomorphism Gal(L/K)/Gal(L/E) ∼= Gal(E/K).

1.9 Infinite Galois theory

The fundamental theorem of Galois theory does not necessarily hold for Galois
extensions that are not finite: even though the notions of fixed fields and Galois
group make perfect sense for infinite extensions, there may be subgroups of the
Galois group that do not correspond to any intermediate field. Nevertheless,
it is possible to generalize the theorem to arbitrary Galois extensions by means
of endowing the Galois group with a topology, so that it becomes a topological
group.

Let us briefly review the notions of topological and profinite group.

Definition 1.1.52. A topological group is a group G together with a topology on G in
such a way that the multiplication map (σ, τ) ∈ G × G 7−→ στ ∈ G and the inverse
map σ ∈ G 7−→ σ−1 ∈ G are continuous.

There is a natural notion for homomorphisms between these objects. Namely,
if G and G′ are topological groups, a map f : G −→ G′ is a homomorphism of
topological groups if f is a homomorphism of groups and a continuous map with
respect to the topologies on G and G′. We will say that f is an isomorphism of
topological groups if it is an isomorphism of groups and a homeomorphism.

Definition 1.1.53. A profinite group is a topological group G which is compact, Haus-
dorff and such that the identity 1G admits a system of open neighbourhoods that are
normal subgroups of G.

Proposition 1.1.54. For a topological group G, the following statements are equivalent:

1. G is profinite.

2. G is compact, Hausdorff and totally disconnected.
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3. G is the projective limit of finite groups.

For the benefit of the reader, we recall briefly the notion of projective limit of
groups.

Definition 1.1.55. Let (I,≤) be a directed poset (i.e, ≤ is a pre-order and every finite
subset of I has an upper bound). Let (Gi)i∈I be a family of groups and suppose that for
each i, j ∈ I with i ≤ j there is a morphism fij : Gj −→ Gi.

1. We say that {Gi, fij}i,j∈I is a projective system if fii = IdGii and fik = fij ◦ f jk for
all i, j, k ∈ I with i ≤ j ≤ k.

2. The projective limit of a projective system {Gi, fij}i,j∈I is defined as the group

lim
←−
i∈I

Gi := {(ai)i∈I ∈∏
i∈I

Gi | fij(aj) = ai for all i, j ∈ I with i ≤ j}.

Thus, Proposition 1.1.54 shows that a finite group is necessarily profinite.
Now, let L/K be a Galois extension with group G. We shall endow G with a

natural topology, called the Krull topology. For a detailed exposition, see [Neu99,
Chapter IV, §1]. Let us write F for the family of intermediate fields E of L/K such
that E/K is a finite Galois subextension of L/K.

Definition 1.1.56. The Krull topology on G is defined as the topology of G for which a
basis of open neighbourhoods of an element σ ∈ G is formed by the left cosets

σGal(L/E), E ∈ F .

A Galois group G endowed with the Krull topology is a topological group.
What is more, it is a profinite group. This will follow from the following result,
in which we express G as a projective limit of finite groups.

Theorem 1.1.57. Let L/K be a Galois extension.

1. The set F together with the restriction maps πL,L′ : Gal(L′/K) −→ Gal(L/K),
where L, L′ ∈ F and L ⊆ L′, form a projective system.

2. There is an isomorphism of topological groups Gal(L/K) ∼= lim
←−
E∈F

Gal(E/K).

The correspondence theorem for arbitrary Galois extensions is as follows.

Theorem 1.1.58. Let L/K be a Galois extension.

1. There is a bijective inclusion-reversing correspondence

{Closed subgroups of Gal(L/K)} −→ {Intermediate fields of L/K}
H 7−→ LH

Gal(L/E) ←− [ E

Under this correspondence, the closed subgroups of Gal(L/K) that are also open
correspond to the finite subextensions of L/K.

2. Given an intermediate field E of L/K, E/K is Galois if and only if Gal(L/E) is a
normal subgroup of Gal(L/K). In that case, the map

Gal(L/K) −→ Gal(E/K)
σ 7−→ σ |E

induces an isomorphism of topological groups Gal(L/K)/Gal(L/E) ∼= Gal(E/K).
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1.10 Exercises

1. Let K be a field with char(K) = 0. Let L and M be finite extensions of K and
M/K is Galois.

(a) Prove that LM/L is Galois and that there is an embedding Gal(LM/L) ↪→
Gal(M/K), which becomes an isomorphism if L ∩M = K.

(b) Suppose that L/K is also Galois. Show that LM/K is Galois and that
there is an embedding Gal(LM/K) ↪→ Gal(L/K)×Gal(M/K), which
becomes an isomorphism if L ∩M = K.

2. Let L be the splitting field of the polynomial f (x) = x4 + 6x2 − 3 over Q.
Determine completely the lattice of intermediate fields of L/Q and the lat-
tice of subgroups of Gal(L/Q).

Note: L is also the splitting field of the polynomial x4 − 3x2 + 3 over Q.

3. Let L/K be a Galois extension with group G.

(a) Show that G endowed with the Krull topology is a topological group.

(b) Prove that the Krull topology on G is discrete if and only if L/K is
finite. Deduce that the fundamental theorem of Galois theory at the
infinite case is a generalization of the one for the finite case.

4. For each m ∈ Z>0, write Lm for the m-th cyclotomic field; that is, Lm :=
Q(ζm), where ζm is a primitive m-th root of unity. In addition, for a prime
number p, let Lp∞ =

⋃
n∈Z>0

Lpn be the union of all the fields Lpn (which is
a field because Lpn ⊂ Lpn+1 for all n ∈ Z>0).

(a) Prove that Lm/Q is Galois and that Gal(Lm/Q) ∼= (Z/mZ)×.
Note: You do not need to prove the result that all the conjugates of ζm
are ζk

m for 1 ≤ k ≤ m and gcd(k, m) = 1.

(b) Show that for each intermediate field E of Lp∞ /Q such that E/Q is
finite, there is some n ∈ Z>0 such that E ⊆ Lpn . Deduce that if in
addition E/Q is Galois, then it is abelian.

(c) Prove that Lp∞ /Q is Galois and that Gal(Lp∞ /Q) ∼= (Zp)×, the multi-
plicative group of the ring of p-adic integers.
Note: You are allowed to use the definition of Zp as a projective limit.

2 Hopf algebras and their actions on modules

In this section we will introduce the notion of Hopf algebra. It is a versatile object
that appears in several areas of mathematics. Our interest in them is due to their
connection with group theory. Throughout this section, R will be a commutative
ring with unity 1 ≡ 1R and unadorned tensor products will be taken over R.

12



2.1 Basic definitions

Definition 1.2.1. An R-Hopf algebra is a 6-uple (H, mH, uH, ∆H, εH, SH) where:

1. H is an R-module.

2. mH : H ⊗ H −→ H and uH : R −→ H are R-linear maps that satisfy:

(a) (Associative property) Given a, b, c ∈ H,

mH ◦ (mH ⊗ IdH)(a⊗ b⊗ c) = mH ◦ (IdH ⊗mH)(a⊗ b⊗ c).

Equivalently, the following diagram is commutative:

H ⊗ H ⊗ H

mH⊗IdH

��

IdH⊗mH // H ⊗ H

mH

��
H ⊗ H

mH // H

(b) (Unit properties) Given a ∈ H and r ∈ R,

mH ◦ (uH ⊗ IdH)(r⊗ a) = r a = mH ◦ (IdH ⊗ uH)(a⊗ r).

Equivalently, the following diagrams are commutative:

H ⊗ R

s2

��

IdH⊗uH // H ⊗ H

mH

{{
H R⊗ Hs1
oo

uH⊗IdH

OO

where s1 : R⊗ H −→ H and s2 : H ⊗ R −→ H are defined by s1(r⊗ a) =
r a = s2(a⊗ r).

The map mH is called multiplication map, and uH is called unit map.

3. ∆H : H −→ H ⊗ H and εH : H −→ R are R-linear maps that satisfy:

(a) (Coassociative property) For all h ∈ H,

(IdH ⊗ ∆H)∆H(h) = (∆H ⊗ IdH)∆H(h).

Equivalently, there is a commutative diagram:

H ⊗ H ⊗ H H ⊗ H
IdH⊗∆Hoo

H ⊗ H

∆H⊗IdH

OO

H
∆Hoo

∆H

OO

13



(b) (Counit properties) For all h ∈ H,

(εH ⊗ IdH)∆H(h) = 1⊗ h,

(IdH ⊗ εH)∆H(h) = h⊗ 1.

Equivalently, the following diagrams are commutative:

H ⊗ R H ⊗ H
IdH⊗εHoo

εH⊗IdH

��
H

−⊗1

OO

∆H

;;

1⊗−
// R⊗ H

The map ∆H is called comultiplication map and εH is called counit map or
augmentation.

4. ∆H and εH are ring homomorphisms, where H is endowed with the ring structure
induced by the maps mH and uH, and H ⊗ H is endowed with the ring structure
induced by the one at H.

5. SH : H −→ H is an R-linear map, called coinverse map or antipode satisfying
the following property:

mH ◦ (IdH ⊗ SH) ◦ ∆H(h) = εH(h) 1H = mH ◦ (SH ⊗ IdH) ◦ ∆H(h), h ∈ H.

If 1 and 2 hold, we say that (H, mH, εH) is an R-algebra.
If 1 and 3 hold, we say that (H, ∆H, εH) is an R-coalgebra.
If 1-4 hold, we say that (H, mH, uH, ∆H, εH) is an R-bialgebra.

We will usually refer to an R-Hopf algebra (H, mH, uH, ∆H, εH, SH) just as H,
leaving implicit the R-Hopf algebra operations.

Let H be an R-Hopf algebra. The R-module structure of H will be called the
underlying module of the R-Hopf algebra H. On the other hand, the operation

ab := mH(a⊗ b), a, b ∈ H

endows H with a ring structure, called the underlying ring of the R-Hopf algebra
H. This is the ring structure at H mentioned at 4. Since we have assumed that R
is a ring with unity, the underlying ring of an R-Hopf algebra has always a unity,
namely 1H = uH(1R). Indeed,

1Ha = uH(1R)a = mH(uH(1R)⊗ a) = mH(uH ⊗ IdH)(1R ⊗ a) = 1Ra = a,

and similarly a1H = a.

Definition 1.2.2. Let M be an R-module. The twist map of M is the map τ : M ⊗
M −→ M⊗M defined by

τ(a⊗ b) = b⊗ a

for every a, b ∈ M.

14



Definition 1.2.3. Let H be an R-Hopf algebra.

1. We say that H is commutative if mH ◦ τ = mH. Equivalently, the underlying
ring structure of H is commutative.

2. We say that H is cocommutative if τ ◦ ∆H = ∆H.

2.2 First examples

Example 1.2.4. A commutative ring R with unity is an R-Hopf algebra over itself,
called the trivial Hopf algebra.

Example 1.2.5 ([Und15], Example 3.1.4). Let H = R[x, y]/⟨xy− 1⟩. This can be
naturally endowed with R-algebra structure. Define ∆H : H −→ H ⊗ H by

∆H(x) = x⊗ x, ∆H(y) = y⊗ y,

εH : H −→ R by
εH(x) = 1, εH(y) = 1

and SH : H −→ H by
SH(x) = y, SH(y) = x.

Then H is a commutative and cocommutative R-Hopf algebra.

The example of Hopf algebra that is of our interest is the following.

Definition 1.2.6. Let G be a group. The R-group algebra of G with coefficients in R,
denoted R[G], is the set

R[G] =
{

∑
g∈G

agg | ag ∈ R, ag = 0 for all but finitely many g ∈ G
}

.

If the group G is finite, the last condition is vacuous. Note that R[G] is free as
an R-module, and a basis is formed by the elements of G. This is a very useful
fact: it means that any R-linear notion or result referring to R[G] can be reduced
to stating or proving it for the elements of G. The same holds for tensor products
of group algebras.

Proposition 1.2.7. Let G be a finite group. Then R[G] is an R-Hopf algebra with the
following operations:

1. Multiplication map defined by mR[G](g ⊗ h) = gh for every g, h ∈ G and unit
map given by uR[G](r) = r1G.

2. Comultiplication given by ∆R[G](g) = g⊗ g for every g ∈ G and counit given by
εR[G](g) = 1 for every g ∈ G.

3. Antipode SR[G] : R[G] −→ R[G] defined by SR[G](g) = g−1 for all g ∈ G and
extended by R-linearity.

Proposition 1.2.8. Let G be a group.

1. R[G] is commutative if and only if G is abelian.
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2. R[G] is cocommutative.

3. If G is finite, R[G] is a free R-module with rank |G|.

The proof of these two results is a routine check that is left to the reader.
If R = K is a field, Proposition 3 is the statement that K[G] is a K-vector space

with dimension |G|.

2.3 Homomorphisms of Hopf algebras

We have defined a Hopf algebra as a structure composed by more simple struc-
tures. In the same way, the notion of a homomorphism of a Hopf algebras arises
naturally as a homomorphism between these structures.

Definition 1.2.9. An R-Hopf algebra homomorphism between two R-Hopf algebras H,
H′ is a map f : H −→ H′ such that:

1. f is an R-linear map between the underlying R-module structures of H and H′.

2. f is a homomorphism between the underlying ring structures of H and H′, that is:

(a) f ◦mH = mH′ ◦ ( f ⊗ f ).

(b) f ◦ uH = uH′ .

3. f preserves the comultiplication and the counit of H, meaning that:

(a) ∆H′ ◦ f = ( f ⊗ f ) ◦ ∆H.

(b) εH = εH′ ◦ f .

4. f preserves the antipode of H, meaning that f ◦ SH = SH′ ◦ f .

If f satisfies 1 and 2, we say that f is a homomorphism of R-algebras.
If f satisfies 1 and 3, f is said to be a homomorphism of R-coalgebras.
If f satisfies 1-3, we will say that f is a homomorphism of R-bialgebras.
In all these cases, H and H′ can be required to be just R-algebras, R-coalgebras or

R-bialgebras, respectively.

The conditions 2a and 2b are equivalent to the commutativity of these dia-
grams:

H
f

// H′

H ⊗ H

mH

OO

f⊗ f
// H′ ⊗ H′

mH′

OO H
f

// H′

R
mH

__

mH′

>>

Likewise, the conditions 3a and 3b are equivalent to the commutativity of
these other diagrams:

H
f

//

∆H
��

H′

∆H′
��

H ⊗ H
f⊗ f
// H′ ⊗ H′

H
f

//

∆H ��

H′

∆H′~~
R
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As for the condition 4, it is equivalent to the commutativity of this diagram:

H
f
//

SH
��

H′

SH′
��

H
f
// H′

We use the terminology of R-Hopf algebra monomorphisms, epimorphisms,
endomorphisms and automorphisms in the usual way.

Definition 1.2.10. We say that two R-Hopf algebras H and H′ are isomorphic if there is
some isomorphism of R-Hopf algebras f : H −→ H′.

2.4 Sub-Hopf algebras

It is usual, when an algebraic structure is introduced, that we consider its sub-
structures. In this section, we shall view the notion of R-sub-Hopf algebra of
an R-Hopf algebra. Fix an R-Hopf algebra H. Following the pattern viewed in
other algebraic structures (groups, rings, vector spaces, etc), we may think of an
R-sub-Hopf algebra of H as a subset B ⊆ H inheriting the Hopf algebra structure
of H. This would mean that we can restrict the Hopf algebra operations of H
successfully so that they endow B with Hopf algebra structure. However, there
is a technical difficulty at this point, and is related with the presence of the ten-
sor product in the Hopf algebra operations. Namely, if B ⊆ H, the canonical
inclusion i : B ↪→ H induces the map

i⊗ i : B⊗ B −→ H ⊗ H,
s⊗ s −→ i(s)⊗ i(s),

but in general i⊗ i is not injective. Thus, for those cases in which indeed i⊗ i is
not injective, it does not make sense to wonder whether the multiplication map
mH : H ⊗ H −→ H of H restricts to B, since B ⊗ B is not a subset of H ⊗ H.
Likewise, it does not make sense to ask if the image of B by the comultiplication
map ∆H : H −→ H ⊗ H lies in B⊗ B.

Definition 1.2.11. Let H be an R-Hopf algebra and let B be an R-submodule of H. Let
i : B −→ H be the canonical inclusion and suppose that i⊗ i is injective. We say that B
is an R-sub-Hopf algebra of H if:

1. mH(B⊗ B) ⊂ B and 1H ∈ B.

2. ∆H(B) ⊂ B⊗ B.

3. SH(B) ⊂ B.

In that case, the Hopf algebra operations of B are obtained by restricting those of H.
Namely:

• Multiplication map: mB := mH |B⊗B : B⊗ B −→ B.

• Unit map uB := uH : R −→ B.

17



• Comultiplication map: ∆B := ∆H |B : B −→ B⊗ B.

• Counit map: εB := εH |B : B −→ R.

• Coinverse map: SB := SH |B : B −→ B.

The injectivity of i⊗ i is not restrictive at all. We can regard i⊗ i as the com-
position

B⊗ B
i⊗IdB // H ⊗ B

IdH⊗i // H ⊗ H

If B and H are flat as R-modules, both i⊗ IdB and IdH ⊗ i are injective, and hence
so is i ⊗ i. In particular, this holds when R is a field, which will be our typical
situation.

We finish the section with an example of computation of sub-Hopf algebras of
a group algebra over a field.

Theorem 1.2.12. Let K be a field and let G be a finite group. The K-sub-Hopf algebras
of K[G] are of the form K[H], with H a subgroup of G.

Proof. It is clear that any K-group algebra K[H] with H subgroup of G is a K-sub-
Hopf algebra of K[G].

Let B be a K-sub-Hopf algebra of K[G]. We must check that B is of the form
K[H] for some subgroup H of G. Since B is a K-sub-Hopf algebra of K[G], in
particular, B is a K-sub-vector space of K[G]. We know that G = {g1, · · · , gn} is a
K-basis of K[G]. Let m = dim(B) and let k = n−m. By basic linear algebra, we
deduce that B can be described by k equations

a11x1 + · · ·+ a1nxn = 0
· · ·
ak1x1 + · · ·+ aknxn = 0

with respect to the basis {gm+1, · · · , gn, g1, · · · , gm}. Let us consider the matrix

A =

a11 · · · a1n
· · · · · · · · ·
ak1 · · · akn

 .

By Gauss method, A is congruent by rows to a matrix of the form 1 · · · 0 −λ
(1)
m+1 · · · −λ

(n)
m+1

· · · · · · · · · · · · · · · · · ·
0 · · · 1 −λ

(1)
n · · · −λ

(n)
n

 .

Then, B has a basis of the form
v1 = g1 + ∑n

i=m+1 λ
(1)
i gi

· · ·

vm = gm + ∑n
i=m+1 λ

(m)
i gi

.
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Since B is K-sub-coalgebra, ∆B(vj) ∈ B⊗K S for all j ∈ {1, . . . , m}. Let us find
the coordinates of ∆B(vj) with respect to the basis {vi⊗ vj}1≤i≤m,1≤j≤m of B⊗K S.
We have 

∆B(v1) = g1 ⊗ g1 + ∑n
i=m+1 λ

(1)
i gi ⊗ gi

. . .

∆B(vm) = gm ⊗ gm + ∑n
i=m+1 λ

(m)
i gi ⊗ gi

and then for 1 ≤ i, j ≤ m,

vi ⊗ vj = gi ⊗ gj +
n

∑
k=m+1

(λ
(j)
k gi ⊗ gk + λ

(i)
k gk ⊗ gj) +

n

∑
k,l=m+1

λ
(i)
k λ

(j)
l gk ⊗ gl.

Now, for each 1 ≤ i, j ≤ m, gi ⊗ gj only appears once in the expression of vi ⊗ vj.
If ∆C(vj) = ∑m

k,l=1 cklvk ⊗ vl, since the elements gk ⊗ gl are linearly independent
in K[G]⊗ K[G], we deduce that ckl = 0 for all k, l ̸= j and cjj = 1. Thus, ∆(vj) =
vj ⊗ vj. That is,

gi⊗ gj +
n

∑
i=m+1

λ
j
i = gj⊗ gj +

n

∑
k=m+1

λ
(j)
k (gk⊗ gk + gk⊗ gj)+

n

∑
k,l=m+1

λ
(j)
k λ

(j)
l gk⊗ gl.

Since gj⊗ gi does not appear in the leftside member and it does in the rightside

one with coefficient λ
(j)
i , λ

(j)
i = 0 for all i ∈ {m + 1, . . . , n}. Since j is arbitrary, we

deduce that vi = gi for all i ∈ {1, . . . , m}.
Let H = {g1, . . . , gm}. We have just checked that H is a K-basis of B, whence

B = K[H]. Since B is a K-subalgebra of K[G], H is a subgroup of G.

Remark 1.2.13. Theorem 1.2.12 will follow directly from a correspondence in-
volving Hopf algebras from the next chapter.

2.5 Sweedler’s notation

When doing computations in which R-coalgebras are involved, we will denote
elements at the image of the comultiplication in an especial way so as to work
with them easily. This is the Sweedler notation. We shall work with Hopf alge-
bras just because it is our situation, but the following applies in the same way for
R-coalgebras. Let H be an R-Hopf algebra, and let h ∈ H. We write

∆H(h) = ∑
(h)

h(1) ⊗ h(2). (1.2)

Note that h(1) and h(2) are just symbolic labels that do not refer to any particular
element of H. We know that an element of H ⊗ H is a sum of elements of the
form h1 ⊗ h2 for h1, h2 ∈ C, and this expression refers to any sum of elements of
such form that equals ∆H(h).

As an immediate application, the counit properties at Definition 1.2.1 3b trans-
late into

∑
(h)

εH(h(1))h(2) = h = ∑
(h)

h(1)εH(h(2)). (1.3)
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On the other hand, the coassociative property gives

∑
(h)

h(1) ⊗ h(2)(1) ⊗ h(2)(2) = ∑
(h)

h(1)(1) ⊗ h(1)(2) ⊗ h(2).

We denote this element by

∆2(h) = ∑
(h)

h(1) ⊗ h(2) ⊗ h(3).

At the same time, we can apply to this element any of the three maps which is the
tensor product of twice IdH and ∆H, and by coassociativity, all of them will give
the same element, denoted

∆3(h) = ∑
(h)

h(1) ⊗ h(2) ⊗ h(3) ⊗ h(4).

Iterating this procedure, we write

∆n−1(h) = ∑
(h)

h(1) ⊗ · · · ⊗ h(n)

for the unique element obtained by iterating coassociativity n times.

2.6 Grouplike elements

On a Hopf algebra we have distinguished elements that can be seen in a certain
way as analogues of elements of groups, the so-called grouplike elements.

Definition 1.2.14. Let H be an R-Hopf algebra. We say that a non-zero element h ∈ H
is grouplike if ∆H(h) = h⊗ h.

Example 1.2.15. Let G be a finite group. By definition of the comultiplication
∆R[G] of the R-group algebra R[G], the elements of G are grouplike elements of
R[G].

Proposition 1.2.16. Let H be an R-Hopf algebra and suppose that the only idempotents
of R are 0 and 1. If h ∈ H is grouplike, then εH(h) = 1.

Proof. Since h is grouplike, we have that ∆H(h) = h⊗ h, and (1.3) translates into
h = εH(h)h. Applying εH yields

εH(h) = εH(εH(h)h) = εH(h)εH(h),

that is, εH(h) is idempotent of R. Our hypothesis in R gives εH(h) ∈ {0, 1}, and
since h ̸= 0, necessarily εH(h) = 1.

Remark 1.2.17. Some authors add the condition that εH(h) = 1 to the definition
of h being grouplike, and they label our grouplike elements as semi-grouplike. If R
is a field, the only idempotents of R are of course 0 and 1.

Write G(H) for the set of grouplike elements of an R-Hopf algebra H.

Theorem 1.2.18. If R has no zero divosors, G(H) is linearly independent over R.
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Proof. This proof comes from [Und15, Proposition 1.2.18], where the result is
proved under the assumption that R is a field.

If G(H) = ∅, then G(H) is R-linearly independent. If G(H) contains just one
element, this element is necessarily non-zero, so G(H) is R-linearly independent.
Thus we can assume that G(H) contains at least two elements.

Let us suppose that G(H) is R-linearly dependent. Since |G(H)| ≥ 2, G(H)
contains some R-linearly independent subset. Let m be the largest integer such
that G(H) contains an R-linearly independent subset S = {hi}m

i=1 with cardinal
m. Let h ∈ G(H)− S. Then there are scalars ri ∈ R such that

h =
m

∑
i=1

rihi.

Applying the comultiplication, since hi ∈ G(H), we have

∆H(h) =
m

∑
i=1

rihi ⊗ hi.

But, since h ∈ G(H), we also get

∆H(h) = h⊗ h =
m

∑
i,j=1

rirjhi ⊗ hj.

Hence,
m

∑
i=1

rihi ⊗ hi =
m

∑
i,j=1

rirjhi ⊗ hj.

Since S is an R-linearly independent subset of H by definition, {hi ⊗ hj}m
i,j=1 is

an R-linearly independent subset of H ⊗ H. Therefore rirj = 0 whenever i ̸= j
and r2

i = ri for every 1 ≤ i ≤ m. Since h ̸= 0, there is some 1 ≤ i ≤ m is such
that ri ̸= 0. Since R has no zero divisors and ri(ri − 1) = 0, necessarily ri = 1.
Moreover rj = 0 for any other j. We conclude that h = hi ∈ S, which contradicts
our choice of h.

In Example 1.2.15 we saw that the elements of a group G are grouplike ele-
ments of the R-group algebra R[G]. If R has no zero divisors, we can use Theorem
1.2.18 to prove that the elements of G are actually all the grouplike elements of
R[G].

Corollary 1.2.19. Let G be a finite group. If R has no zero divisors, then G(R[G]) = G.

Proof. By Example 1.2.15, the elements of G belong to G(R[G]), so G ⊆ G(R[G]).
But by Theorem 1.2.18, |G(R[G])| ≤ rkR(R[G]) = |G|. Then the equality follows.

In particular, the grouplike elements of an R-group algebra form a group. This
is actually a general fact for grouplike elements of a Hopf algebra.

Proposition 1.2.20 ([Chi00], (1.6)). G(H) is a group with the product of H.
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Proof. First, since ∆H is an R-algebra homomorphism and the unit of H ⊗ H is
1⊗ 1, ∆H(1) = 1⊗ 1. Then 1 ∈ G(H), so G(H) is not empty.

Let h1, h2 ∈ G(H). Then,

∆H(h1 h2) = ∆H(mH(h1 ⊗ h2))

= mH⊗H(∆H(h1)⊗ ∆H(h2))

= mH⊗H((h1 ⊗ h1)⊗ (h2 ⊗ h2))

= (h1 h2)⊗ (h1 h2),

which proves that h1 h2 ∈ G(H).
Given h ∈ G(H),

h SH(h) = mH(h⊗ SH(h)) = mH(IdH ⊗ SH)(h⊗ h) =
= mH(IdH ⊗ SH)∆H(h)
= ϵH(h) 1H = 1H

,

and similarly, σH(h) h = 1H. So it is enough to prove that SH(h) ∈ G(H). We
have that h SH(h) = 1H, so

1H ⊗ 1H = ∆H(mH(IdH ⊗ SH)(h⊗ h))
= mH⊗H(∆H(h)⊗ ∆H(SH(h)))
= mH⊗H((h⊗ h)⊗ ∆H(SH(h))) = (h⊗ h)∆H(SH(h)).

By the uniqueness of the inverse in the algebra H⊗ H, ∆H(SH(h)) = SH(h)⊗
SH(h), so SH(h) ∈ G(H) as we wanted.

From Corollary 1.2.19 it also follows that the grouplike elements of R-group
algebras R[G] with G finite form an R-basis. Under the assumption that R has no
zero divisors, they are the only finitely generated and free R-Hopf algebras with
this behaviour.

Corollary 1.2.21. Suppose that R has no zero divisors and let H be a finitely generated
and free R-Hopf algebra admitting an R-basis G formed by grouplike elements. Then
G = G(H) and H = R[G].

Proof. By hypothesis, G ⊆ G(H) and G is an R-basis of H. We know from The-
orem 1.2.18 that G(H) is R-linearly independent, so necessarily G = G(H). In
particular, G is a group, so it makes sense to consider the R-group algebra R[G].
Since G is an R-basis of H, we can regard H as the R-span of the elements of G.
Moreover, multiplication is closed for elements of N, so H = R[G] follows.

2.7 Duality

Recall that the dual of an R-module M, denoted M∗, is the set

HomR(M, R) = { f : M −→ R | f R-linear}.

Note that HomR(M, R) becomes also an R-module when it is endowed with
pointwise multiplication by R. Moreover, an R-linear map φ : M −→ M′ gives
rise to a map φ∗ : M′∗ −→ M∗ defined by φ∗(g)(m) = g(φ(m)), where m ∈ M
and g ∈ M′∗. Thus, we have a contravariant functor at the category of R-modules,
which we call the duality functor.
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2.7.1 Finite R-modules and projective coordinate sytems

If R is a field and M is a finite dimensional R-vector space, then it is well known
that for every R-basis {mi}n

i=1 of M there is an R-basis { fi}n
i=1 of M∗, called the

dual basis, such that fi(mj) = δij for every 1 ≤ i, j ≤ n, where δij is the Kronecker
delta. However, we want to keep a broader perspective, since it is often useful to
consider dual modules over rings. The analogue over rings to finite dimensional
vector spaces over fields are finitely generated and projective modules. We will
refer to such modules as finite. Namely:

Definition 1.2.22. Let M be an R-module.

1. We say that M is finitely generated if there is a finite subset {mi}n
i=1 ⊂ M such

that M = ∑n
i=1 Rmi.

2. We say that M is projective if it is a direct summand of a free R-module.

3. We say that M is finite if it is finitely generated and projective.

The analogy between finite dimensional vector spaces and finite modules lies
in the following result:

Proposition 1.2.23. An R-module M is finite if and only if there are n ∈ Z≥1 and
elements m1, . . . , mn ∈ M, f1, . . . , fn ∈ M∗ such that for each m ∈ M we have

m =
n

∑
i=1

fi(m)mi.

Definition 1.2.24. Let M be a finite R-module. A set {mi, fi}n
i=1 as in Proposition

1.2.23 is called a projective coordinate system for M.

When R is a field, finite R-modules are actually finite-dimensional R-vector
spaces, and the union of a basis together with its dual is a projective coordinate
system.

Remark 1.2.25. Free modules of finite rank are finite, but the converse in general
does not hold. The existence of a projective coordinate system is coherent with
this fact, because the expression of m with respect to the elements mi may not be
unique.

Remark 1.2.26. If {mi, fi}n
i=1 is a projective coordinate system for a finite R-module

M, we can also write elements of M∗ with respect to the fi. Indeed, given m ∈ M,
we know that m = ∑n

i=1 fi(m)mi. Applying f at both sides, we obtain f (m) =
∑n

i=1 f (mi) fi(m). Since m is arbitrary, this means that

f =
n

∑
i=1

f (mi) fi.

Proposition 1.2.27. If M is a finite R-module, then so is M∗. Moreover, there is a
canonical isomorphism M ∼= M∗∗ as R-modules.
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Proof. Suppose that M is a finite R-module. Then M is a direct summand of a free
R-module of finite rank n, that is, there is an R-module N such that Rn = M⊕ N.
Now, applying the duality functor, we have that Rn = M∗ ⊕ N∗, so M∗ is finitely
generated and projective.

Let us define

η : M −→ M∗∗,
m −→ η(m) : M∗ → R, f 7→ f (m),

which is clearly a canonical morphism of R-modules. Let us prove that it is bijec-
tive. Since M is finite, it admits a projective coordinate system {hi, fi}n

i=1. Let us
consider the map

µ : M∗∗ −→ M,
φ 7−→ ∑n

i=1 φ( fi)mi.

This is clearly R-linear. Now, for every φ ∈ M∗∗ and f ∈ M∗,

η ◦ µ(φ)( f ) = f (µ(φ)) = f
( n

∑
i=1

φ( fi)mi

)
= φ

( n

∑
i=1

f (mi) fi

)
= φ( f ),

the last equality due to Remark 1.2.26. On the other hand, given m ∈ M and
f ∈ M∗,

µ ◦ η(m) =
n

∑
i=1

η(m)( fi)mi =
n

∑
i=1

fi(m)mi = m.

Remark 1.2.28. The isomorphism η being canonical means that its definition does
not depend on any choice; we can say that it is written the same for any finite R-
module M. In particular, if M is free of finite rank, the definition of η does not
depend on the choice of bases. In this case, we have that M is isomorphic as an R-
module with M∗, because they have the same rank. However, this isomorphism
is not canonical, in the sense that it depends on the choice of bases: if we change
bases, the definition of the isomorphism also changes.

After Proposition 1.2.27, we often identify H = H∗∗ by identifying any ele-
ment h ∈ H with its image η(h) ∈ H∗∗.

Corollary 1.2.29. Let M be a finite R-module. If {hi, fi}n
i=1 is a projective coordinate

system for M, then { fi, hi}n
i=1 is a projective coordinate system for M∗.

When we take m ∈ M and f ∈ M∗, f (m) stands for the map f evaluated at the
element m. But identifying m with its image in M∗∗, f (m) coincides with m( f ),
which means the map m : M∗ −→ M∗ evaluated at the element f ∈ M∗. In the
contexts where both expressions arise, we will unify these two points of view by
using the map

⟨·, ·⟩ : M∗ ⊗M −→ R, ⟨ f , h⟩ = f (h).

Under this convention,

m =
n

∑
i=1
⟨ fi, m⟩mi, m ∈ M,
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f =
n

∑
i=1
⟨ f , mi⟩ fi, f ∈ M∗.

Let us study how the duality functor behaves with respect to the tensor prod-
uct. Namely, for two R-modules M and N, we are interested in the relation be-
tween M∗ ⊗ N∗ and (M ⊗ N)∗. There is an important remark: if f ∈ M∗ and
g ∈ N∗, f ⊗ g can stand for the tensor product of f and g, which is an element
of M∗ ⊗ N∗, or the R-linear map M ⊗ N −→ R defined by m⊗ n 7→ f (m)g(n),
which is an element of (M⊗ N)∗. However, both objects can be identified, as by
the universal property of the tensor product, given f and g there is a unique R-
linear map as above (see [Und15, Proposition 1.1.7]). Actually, we have been us-
ing implicitly this fact each time we considered a tensor product of R-linear maps.
Now, let Φ : M∗ ⊗ N∗ −→ (M⊗ N)∗ be the map defined by Φ( f ⊗ g)(m⊗ n) =
f (m)g(n) (and extended by R-linearity), i.e, it carries the first interpretation of
f ⊗ g to the second one.

Proposition 1.2.30. Let M and N be R-modules. Let Φ : M∗ ⊗ N∗ −→ (M ⊗ N)∗

defined by

Φ( f ⊗ g)(m⊗ n) = f (m)g(n), f ∈ M∗, g ∈ N∗, m ∈ M, n ∈ N

and extended by R-linearity.

1. If R has no zero divisors, Φ is injective.

2. If either M or N is finite as an R-module, then Φ is bijective.

Proof. 1. Let f ⊗ g ∈ Ker(Φ), so f (m)g(n) = 0 for all m ∈ M and all n ∈ N. If
f = 0, we have finished. Otherwise, if f ̸= 0, there is some m ∈ M such that
f (m) ̸= 0. Since R has no zero divisors, g(n) = 0 for all n ∈ N, so g = 0.
Then f = 0 or g = 0, proving that f ⊗ g = 0.

2. Suppose that M is finite as an R-module and pick a projective coordinate
system {mi, fi}n

i=1 for M. Let Ψ : (M ⊗ N)∗ −→ M∗ ⊗ N∗ be the map de-
fined by Ψ(φ) = ∑n

i=1 fi ⊗ φ(mi ⊗ −). It is straightforward to check the
R-linearity of Ψ. We prove that it is the inverse of Φ, from which it will
follow the statement. Given f ∈ M∗ and g ∈ N∗,

Ψ ◦Φ( f ⊗ g) =
n

∑
i=1

fi ⊗Φ( f ⊗ g)(mi ⊗−)

=
n

∑
i=1

fi ⊗ ⟨ f , mi⟩g

=
n

∑
i=1
⟨ f , mi⟩ fi ⊗ g

= f ⊗ g,

where the last equality follows from Remark 1.2.26. Conversely, given φ ∈
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(M⊗ N)∗, m ∈ M and n ∈ N,

Φ ◦Ψ(φ)(m⊗ n) =
n

∑
i=1
⟨ fi, m⟩φ(mi ⊗ n)

= φ
( n

∑
i=1
⟨ fi, m⟩mi ⊗ n

)
= φ(m⊗ n).

Since m and n are arbitrary, it follows that Φ ◦Ψ(φ) = φ.

In particular, Φ is bijective when R is a field and M, N are finite-dimensional
R-vector spaces.

2.7.2 Duals of Hopf algebras

Let us apply the notions related with duality to the context of Hopf algebras.
Looking at Definition 1.2.1, one can regard the notions of algebra and coal-

gebra as duals: the diagram at 2a for the associative property is obtained from
reversing arrows at the diagram 3a for the coassociative property. The same phe-
nomenon can be observed with the diagrams 2b and 3b for the unit and counit
properties respectively. This intuition is materialized in the result that the dual of
an R-coalgebra is an R-algebra.

Proposition 1.2.31 ([Und15], Proposition 1.3.1). If C is an R-coalgebra, then C∗ is an
R-algebra with multiplication map mC∗ : C∗ ⊗ C∗ −→ C∗ defined by

mC∗( f ⊗ g) := ( f ⊗ g) ◦ ∆C, f , g ∈ C∗

and unit map uC∗ : R −→ C∗ given by

uC∗(r)(c) = rεC(c), r ∈ R, c ∈ C

Proof. Let us prove that mC∗ satisfies the associative property. For f , g, h ∈ C∗ and
c ∈ C, we have:

mC∗ ◦ (IdC∗ ⊗mC∗)( f ⊗ g⊗ h)(c) = mC∗( f ⊗ ∆C∗(g⊗ h))(c)
= ( f ⊗ ∆C∗(g⊗ h)) ◦ ∆C(c)

= ∑
(c)

f (c(1))⊗ ∆C∗(g⊗ h))(c(2))

= ∑
(c)

f (c(1))⊗ ((g⊗ h) ◦ ∆C(c(2)))

= ∑
(c)

f (c(1))⊗ g(c(2))⊗ h(c(3)).
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Likewise,

mC∗ ◦ (mC∗ ⊗ IdC∗)( f ⊗ g⊗ h)(c) = mC∗(∆C∗( f ⊗ g)⊗ h)(c)
= (∆C∗( f ⊗ g)⊗ h) ◦ ∆C(c)

= ∑
(c)

∆C∗( f ⊗ g))(c(1))⊗ h(c(2))

= ∑
(c)
(( f ⊗ g) ◦ ∆C(c(1)))⊗ h(c(2))

= ∑
(c)

f (c(1))⊗ g(c(2))⊗ h(c(3)).

Since we have arrived in the same expression, the first members at each chain of
equalities coincide, which proves that the associative property holds.

As for the unit property, given r ∈ R, f ∈ C∗ and c ∈ C, we have

mC∗ ◦ (IdC∗ ⊗ uC∗)( f ⊗ r)(c) = mC∗( f ⊗ uC∗(r))(c)
= ( f ⊗ uC∗(r)) ◦ ∆C(c)

= ∑
(c)

f (c(1))rεC(c(2))

= r ∑
(c)

f (c(1))εC(c(2))

= r ∑
(c)

f (εC(c(2))c(1))

= r f
(

∑
(c)

εC(c(2))c(1)
)

= r f (c).

In the same way, we prove that mC∗ ◦ (uC∗ ⊗ IdC∗)(r ⊗ f )(c) = r f (c) for every
r ∈ R, f ∈ C∗ and c ∈ C. Hence the unit property is satisfied. This finishes the
proof.

Remark 1.2.32. If we appy the duality functor at the counit map εC we obtain
the unit map uC∗ at Proposition 1.2.31. Indeed, ε∗C : R∗ −→ C∗ is defined by
ε∗C( f )(c) = f ◦ εC(c). Note that R∗ = EndR(R), whose only elements f ∈ R∗

are homotheties with factor f (1R), and then R∗ identifies trivially with R by f 7→
f (1). Then ε∗C : R −→ C∗ is defined by ε∗C(r)(c) = rεC(c) = uC∗(r)(c). Sine r and
c are arbitrary, ε∗C = uC∗ .

As for the relation between mC∗ and the dual ∆∗C of the comultiplication map
∆C, the matter is more subtle, as the map C∗⊗C∗ −→ (C⊗C)∗ need not be injec-
tive (even though Proposition 1.2.31 is still valid in that case). However, following
Proposition 1.2.30, there is injectivity when R has no zero divisors or C is finite
as an R-module.In that case, applying the duality functor to the comultiplication
∆C : C −→ C⊗ C yields the map

∆∗C : (C⊗ C)∗ −→ C∗

defined as ∆∗C(φ) = φ ◦ ∆C, and we can consider the restriction ∆∗C |C∗⊗C∗ , which
is just the multiplication map mC∗ .
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Remark 1.2.33. Let C be an R-coalgebra and consider the R-algebra structure on
C∗ from Proposition 1.2.31. Then, the identity element for the multiplication on
C∗ is the counit map εC of C. Indeed, given f ∈ C∗ and c ∈ C, we have

mC∗( f ⊗ εC)(c) = ( f ⊗ εC)∆C(c)

= ∑
(c)

εC(c(2)) f (c(1))

= f
(

∑
(c)

εC(c(2))c(1)
)

= f (c),

so mC∗( f ⊗ εC) = f . Similarly, one proves that mC∗(εC ⊗ f ) = f .

After Proposition 1.2.31, one may expect that if A is an R-algebra, then A∗

is an R-coalgebra. However, this is not always the case (see [Und15, Example
1.3.2] for a counterexample). Instead, we will that it holds when A is finite as an
R-module (if R is a field, this is just assuming that A is of finite dimension).

Let us think on what happens when one applies the duality functor to the
multiplication map mA : A⊗ A −→ A. We obtain a map m∗A : A∗ −→ (A⊗ A)∗.
Again by Proposition 1.2.30, we have that (A ⊗ A)∗ ∼= A∗ ⊗ A∗ because A is
finite, and identifying both, we obtain a map m∗A : A∗ −→ A∗ ⊗ A∗. For f ∈
A∗, we can consider m∗A( f ) as an element of (A ⊗ A)∗, and then, for a, b ∈ A,
m∗A( f )(a⊗ b) = f (mA(a⊗ b)). Therefore, thanks to the hypothesis that A is finite
as an R-module, the image of m∗A lies in A∗ ⊗ A∗.

On the other hand, if one dualizes the unit map uA : R −→ A, we obtain a
map u∗A : A∗ −→ R∗ defined by uA∗( f )(r) = f (uA(r)). Identifying R∗ = R, we
obtain that u∗A : A∗ −→ R is defined by uA∗( f ) = f (1A).

In the following we shall see that the maps m∗A and u∗A serve as comultiplica-
tion and counit maps for A∗, respectively.

Proposition 1.2.34 ([Und15], Proposition 1.3.9). If A is an R-algebra that is finite
as an R-module, then A∗ is an R-coalgebra with comultiplication map ∆A∗ : A∗ −→
A∗ ⊗ A∗ defined as

∆A∗( f )(a⊗ b) = f ◦mA(a⊗ b), a, b ∈ A,

and counit map εA∗ : A∗ −→ R given by

εA∗( f ) = f (1A).

Proof. Let us check the coassociative property. For f ∈ A∗ and a, b, c ∈ A, we
claim that

(IdA∗ ⊗ ∆A∗) ◦ ∆A∗( f ) = ∆A∗( f ) ◦ (IdA ⊗mA).

Indeed, let us write

∆A∗( f ) =
s

∑
i=1

αi ⊗ βi, αi, βi ∈ A∗
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(note that we are not allowed to use Sweedler’s notation as long as we do not
know that ∆A∗ is a comultiplication). Then, given a, b, c ∈ A

(IdA∗ ⊗ ∆A∗) ◦ ∆A∗( f )(a⊗ b⊗ c) =
s

∑
i=1

αi ⊗ ∆A∗(βi)(a⊗ b⊗ c)

=
s

∑
i=1
⟨αi, a⟩βi ◦mA(b⊗ c)

=
s

∑
i=1

(αi ⊗ βi)(IdA ⊗mA)(a⊗ b⊗ c)

= ∆A∗( f ) ◦ (IdA ⊗mA)(a⊗ b⊗ c),

as claimed. Hence

(IdA∗ ⊗ ∆A∗) ◦ ∆A∗( f )(a⊗ b⊗ c) = ∆A∗( f ) ◦ (IdA ⊗mA)(a⊗ b⊗ c)
= f ◦mA ◦ (IdA ⊗mA)(a⊗ b⊗ c)
= f ◦mA(a⊗ (bc))
= a(bc).

Likewise, it is proved that

(∆A∗ ⊗ IdA∗) ◦ ∆A∗( f )(a⊗ b⊗ c) = (ab)c.

Since A is an R-algebra, the associative property gives that (ab)c = a(bc), imply-
ing coassociativity.

Finally, we check the counit property. Given f ∈ A∗, r ∈ R and a ∈ A, we
have

(εA∗ ⊗ IdA∗) ◦ ∆A∗( f )(r⊗ a) = ∆A∗(uA ⊗ IdA)(r⊗ a)
= f ◦mA(uA ⊗ IdA)(r⊗ a)
= f (mA(r1A ⊗ a)
= f (ra)
= r f (a)
= (1⊗ f )(r⊗ a),

so (εA∗ ⊗ IdA∗)( f ) = 1⊗ f , and similarly, (IdA∗ ⊗ εA∗)( f ) = f ⊗ 1.

In the end, we see that the category of R-Hopf algebras is invariant under the
duality functor.

Proposition 1.2.35. Let H be a finite R-Hopf algebra. Then H∗ is an R-Hopf algebra.

Proof. We follow the proof at [Und15, Proposition 3.1.12].
By Proposition 1.2.31, H∗ is an R-algebra with multiplication mH∗ := ∆∗H |H∗⊗H∗

and unit uH∗ := ε∗H. On the other hand, since H is finite as an R-module, Proposi-
tion 1.2.34 gives that H∗ is an R-coalgebra with comultiplication ∆H∗( f ) = f ◦mH
and counit εH∗( f ) = f (1H). Now, it is straightforward to check that ∆H∗ and εH∗

are ring homomorphisms, proving that H∗ is an R-bialgebra. Let us consider the
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dual S∗H : H∗ −→ H∗ of the antipode SH : H −→ H. Given f ∈ H∗ and a ∈ H, we
have

(mH∗ ◦ (IdH∗ ⊗ S∗H) ◦ ∆H∗( f ))(a) = (IdH∗ ⊗ S∗H)(∆H∗( f )(∆H(a)))
= ∆H∗( f )((IdH ⊗ SH) ◦ ∆H(a))
= f (mH ◦ (IdH ⊗ SH) ◦ ∆H(a))
= f (εH(a)1H)

= εH(a) f (1H)

= εH∗( f )εH(a)
= εH∗( f )1H∗(a).

Likewise,
(mH∗ ◦ (S∗H ⊗ IdH∗) ◦ ∆H∗( f ))(a) = εH∗( f )1H∗(a).

Then SH∗ := S∗H works as an antipode and H∗ is an R-Hopf algebra.

Proposition 1.2.36. Let H be an R-Hopf algebra which is finite as an R-module. Then
H∗∗ is an R-Hopf algebra and H ∼= H∗∗ as R-Hopf algebras.

Proof. That H∗∗ is an R-Hopf algebra follows directly from Proposition 1.2.35.
On the other hand, from the proof of Proposition 1.2.27, we know that there is
an isomorphism η : H −→ H∗∗ of R-modules defined by η(h)( f ) = f (h). It is
enough to check that this is an isomorphism of R-Hopf algebras.

• Given h, h′ ∈ H and f ∈ H∗,

(mH∗∗(η ⊗ η)(h⊗ h′))( f ) = (η(h)⊗ η(h′))∆H∗( f )

= (η(h)⊗ η(h′))
(

∑
( f )

f(1) ⊗ f(2)
)

= ∑
( f )

η(h)( f(1))η(h
′)( f(2))

= ∑
( f )

f(1)(h) f(2)(h
′)

= ∑
( f )

f(1) ⊗ f(2)(h⊗ h′)

= ∆H∗( f )(h⊗ h′)
= f ◦mH(h⊗ h′)
= f (mH(h⊗ h′))
= η(mH(h⊗ h′))( f ).

Then mH∗∗ ◦ (η ⊗ η)(h ⊗ h′) = η ◦ mH(h ⊗ h′) for every h ⊗ h′, whence
mH∗∗ ◦ (η ⊗ η) = η ◦mH.

• Given r ∈ R and f ∈ H∗,

η ◦ uH(r)( f ) = rη(1H)( f )
= r f (1H)

= rεH∗( f )
= uH∗∗(r)( f ).

Then η ◦ uH = uH∗∗ .
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• Note that since H∗∗ ⊂ (H∗ ⊗ H∗)∗, elements of H∗∗ can be seen as R-linear
maps H∗ ⊗ H∗ −→ R. Now, given h ∈ H and f , g ∈ H∗,

(∆H∗∗ ◦ η(h))( f ⊗ g) = η(h) ◦mH∗( f ⊗ g)
= η(h)(( f ⊗ g) ◦ ∆H)

= ( f ⊗ g)∆H(h)

= ∑
(h)

f (h(1))⊗ g(h(2))

= ∑
(h)

η(h(1))( f )⊗ η(h(2))(g)

= (η ⊗ η)∆H(h)( f ⊗ g).

It follows that ∆H∗∗ ◦ η = (η ⊗ η)∆H.

• Given h ∈ H,

εH∗∗ ◦ η(h) = η(h)(1H∗) = 1H∗(h) = εH(h).

Then, εH∗∗ ◦ η = εH.

• Given h ∈ H and f ∈ H∗,

SH∗∗ ◦ η(h) = η(h) ◦ SH∗( f ) = SH∗( f )(h) = f ◦ SH(h) = η ◦ SH(h)( f ).

Then SH∗∗ ◦ η = SH.

Corollary 1.2.37. Let H be a finite R-module. Then H is an R-Hopf algebra if and only
if so is H∗.

Proof. The left-to-right implication is Proposition 1.2.35. Conversely, assume that
H∗ is an R-Hopf algebra. Again by Proposition 1.2.35, we have that H∗∗ is an
R-Hopf algebra. Now, we induce on H an R-Hopf algebra structure by means
of the isomorphism of R-modules η : H −→ H∗∗. Namely, we define on H the
following operations:

• Multiplication map: mH := η−1 ◦mH∗∗ ◦ (η ⊗ η).

• Unit map: uH := η−1 ◦ ηH∗∗ .

• Comultiplication map: ∆H := (η−1 ⊗ η−1) ◦ ∆H∗∗ ◦ η.

• Counit map: εH := εH∗∗ ◦ η.

• Coinverse map: SH := η−1 ◦ SH∗∗ ◦ η.

Since the previous definitions are equivalent to the axioms for a Hopf algebra
homomorphism (see Definition 1.2.9), it is automatic that H is an R-Hopf algebra
with these operations. But by Proposition 1.2.36, this Hopf algebra structure on
H is the one such that its bidual is the one at H∗∗, and hence its dual is the one at
H∗.
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2.8 Modules and comodules

Let us fix an R-Hopf algebra H. Suppose that we have an R-module A which in
addition is an H-module. This means that we have an external product of H on A,
or equivalently, an action H× A −→ A, that preserves the additive structure of S.
If in addition we want H to act R-linearly on A, that is, the action is preserved by
external multiplication by R, we should impose that the map above is R-bilinear.
Equivalently, we can think of it as an R-linear map H ⊗ A −→ A, which will be
our usual way to consider R-linear actions.

We need to consider R-linear actions of R-Hopf algebras that are in addition
well behaved with respect to the Hopf algebra operations. This leads to the notion
of left H-module.

Definition 1.2.38. Let A be an R-module and let H be an R-Hopf algebra. We say that
A is a left H-module if there is an R-linear map α : H ⊗ A −→ A such that:

1. (Associative property) α ◦ (IdH ⊗ α) = α ◦ (mH ⊗ IdA), that is, the following
diagram is commutative:

H ⊗ H ⊗ A

IdH⊗α

��

mH⊗IdA // H ⊗ A

α

��
H ⊗ A α // H

2. (Unit property) α ◦ (uH ⊗ IdA)(r⊗ a) = ra for every r ∈ R and a ∈ A, that is,
the following diagram is commutative:

R⊗ A

uH⊗IdA

��

s

!!
H ⊗ A α // A

where s : R⊗ A −→ A is the R-linear action of R on A induced by uA.

We will also say that A is a left H-module via α.

Remark 1.2.39. The notion of left H-module at Definition 1.2.38 is not the usual
notion of left module over a ring, that is, an abelian group receiving the external
product of a ring of scalars that preserves addition. The mere existence of an R-
linear map α : H⊗ A −→ A yields that A is a left module over the underlying ring
structure of H in that sense. Instead, our ground ring is required to be an R-Hopf
algebra and we impose that the associative and unit properties at Definition 1.2.38
are satisfied. In fact, there is no need of the coalgebra structure and the antipode,
so we can actually define the notion of left S-module, for an R-algebra S, in the
same way.
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If A is a left H-module, we usually refer to α : H ⊗ A −→ A as an R-linear
action or module map. We may use the label αA for the action of A when other
left H-modules are present in the context. Given h ∈ H and a ∈ A, we will
usually denote h · a := α(h ⊗ a). Under this notation, the associative property
means that

(hh′) · a = h · (h′ · a), h, h′ ∈ H, a ∈ A,

while the unit property translates into

(r1H) · a = ra, r ∈ R, a ∈ A.

Example 1.2.40. 1. The ground ring R has itself left H-module structure by
means of

h · r = εH(h)r, h ∈ H, r ∈ R.

2. Let A be a left H-module. Then, A⊗ A is also a left H-module with respect
to

h · (a⊗ b) := ∑
(h)

(h(1) · a)⊗ (h(2) · b), h ∈ H, a, b ∈ A.

3. An R-Hopf algebra H is a left H-module with the multiplication mH as R-
linear action.

Definition 1.2.41. Let H be an R-Hopf algebra and let A and A′ be left H-modules. We
say that an R-module homomorphism f : A −→ A′ is a left H-module homomorphism if
f ◦ αA = αA′ ◦ (IdH ⊗ f ), that is, the following diagram commutes:

A
f

// A′

H ⊗ A

αA

OO

IdH⊗ f
// H ⊗ A′

αA′

OO

While in the notion of left H-module we have an action consisting on an R-
linear map α : H⊗ A −→ A compatible with the Hopf algebra operations, we can
dualize this notion to the one of right H-comodule.

Definition 1.2.42. Let A be an R-module. We say that A is a right H-comodule if
there is an R-module homomorphism β : A −→ A⊗ H such that:

1. (Coassociative property) (β⊗ IdH) ◦ β = (IdA ⊗ ∆H) ◦ β, that is, the follow-
ing diagram is commutative:

A⊗ H ⊗ H A⊗ H
β⊗IdHoo

A⊗ H

IdA⊗∆H

OO

A
β

oo

β

OO
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2. (Counit property) (IdA ⊗ εH) ◦ β is the trivial R-linear map ι : A −→ A⊗ R,
that is, the following diagram is commutative:

A⊗ H

IdA⊗εH

��

A
β

oo

ι

}}
A⊗ R

We will also say that A is a right H-comodule via β.

Remark 1.2.43. As in the case of left H-modules, for the notion of right H-comodule,
the requirement of H to be an R-Hopf algebra is not needed, so that right C-
comodules are defined in the same way for an R-coalgebra C.

We will usually call the map β : A −→ A⊗ H an R-linear coaction or comod-
ule map. We have also a Sweedler notation for this map. Namely, if a ∈ A, we
will write

β(a) = ∑
(a)

a(0) ⊗ a(1), a(0) ∈ A, a(1) ∈ H. (1.4)

Again, when we are working also with other right H-comodules, we may denote
βA for the comodule map of A.

Example 1.2.44. 1. The ring R can be seen as a right H-comodule with coaction

βR(r) = r⊗ uH(1R), r ∈ R.

2. If A is a right H-comodule, then so is A⊗ A with coaction

βA⊗A(a⊗ b) = ∑
(a),(b)

a(0) ⊗ b(0) ⊗mH(a(1) ⊗ b(1)), a, b ∈ A.

3. An R-Hopf algebra H is a right H-comodule with the comultiplication ∆H as coac-
tion.

Definition 1.2.45. Let A and A′ be right H-comodules. We say that an R-linear map
f : A −→ A′ is a right H-comodule homomorphism if βA′ ◦ f = ( f ⊗ IdH) ◦ βA, that
is, the following diagram commutes:

A

βA

��

f
// A′

βA′

��
H ⊗ A

IdH⊗ f
// H ⊗ A′

Now, suppose that the R-Hopf algebra H is finite. Recall that the dual H∗ is
also an R-Hopf algebra which is finite as an R-module (in short, we will refer
to H as a finite R-Hopf algebra). If we fix a projective coordinate system for H,
we can induce a right H∗-comodule structure from a left H-module structure and
viceversa, and both operations are inverse to each other.
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Proposition 1.2.46. Let H be a finite R-Hopf algebra and let {hi, fi}n
i=1 be a projective

coordinate system for H.

1. If A is a right H-comodule, then it is a left H∗-module with action H∗ ⊗ A −→ A
defined by

f · a := ∑
(a)

a(0) ⟨ f , a(1)⟩, f ∈ H∗, a ∈ A.

2. If A is a left H-module, then it is a right H∗-comodule with coaction given by the
map

β : A −→ A⊗ H∗,
a 7−→ ∑n

i=1(hi · a)⊗ fi.

Proof. 1. We prove the validity of the conditions 1 and 2 at Definition 1.2.38.

We first check 1. The coassociative property for β means that

∑
(a)

β(a(0))⊗ a(1) = ∑
(a)

a(0) ⊗ ∆H(a(1)), a(0) ∈ A, a(1) ∈ H.

Writing down the Sweedler notation for β(a(0)), we have

∑
(a)

a(0) ⊗ a(1) ⊗ a(2) = ∑
(a)

a(0) ⊗ ∆H(a(1)).

Given f , f ′ ∈ H∗ and a ∈ A, we obtain

( f f ′) · a = ∑
(a)

a(0)⟨ f f ′, a(1)⟩

= ∑
(a)

a(0)mH∗( f ⊗ f ′)(a(1))

= ∑
(a)

a(0)( f ⊗ f ′) ◦ ∆H(a(1))

= ∑
(a)

a(0)⟨ f , a(1)⟩⟨ f ′, a(2)⟩

= f ·
(

∑
(a)

a(0)⟨ f ′, a(1)⟩
)

= f · ( f ′ · a),

as we wanted.

Next, we check 2. For r ∈ R and a ∈ A, we have

(r1H∗) · a = ∑
(a)

a(0)⟨r1H∗ , a(1)⟩ = r ∑
(a)

a(0)εH(a(1)) = a.

2. We shall check that the conditions 1 and 2 at Definition 1.2.42 are satisfied.

Given a ∈ A, we have that

(β⊗ IdH∗) ◦ β(a) = (β⊗ 1)

(
n

∑
i=1

(hi · a)⊗ fi

)
=

n

∑
i,j=1

(hj · (hi · a))⊗ f j ⊗ fi,
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(IdA⊗∆H∗) ◦ β(a) = (1⊗∆H∗)

(
n

∑
i=1

(hi · a)⊗ fi

)
=

n

∑
i=1

(hi · a)⊗

∑
( fi)

fi(1) ⊗ fi(2)

 .

Next, we evaluate at an element h⊗ h′ ∈ H ⊗ H, obtaining that

(β⊗ IdH∗) ◦ β(a)(h⊗ h′) =
n

∑
i,j=1

(hj · (hi · a)) ⟨ f j ⊗ fi, h⊗ h′⟩

=
n

∑
i,j=1

(hj · (hi · a)) ⟨ f j, h⟩ ⟨ fi, h′⟩

=
n

∑
j=1
⟨ f j, h′⟩ hj ·

(
n

∑
i=1
⟨ fi, h′⟩ (hi · a)

)
= h · (h′ · a),

(IdA ⊗ ∆H∗) ◦ β(a)(h⊗ h′) =
n

∑
i=1

(hi · a)

∑
( fi)

⟨ fi(1) ⊗ fi(2), h⊗ h′⟩


=

n

∑
i=1

(hi · a)

∑
( fi)

⟨ fi(1), h⟩ ⟨ fi(2), h′⟩


=

n

∑
i=1

(hi · a)∆H∗( fi)(h⊗ h′)

=
n

∑
i=1

(hi · a) ⟨ fi, h h′⟩

= (h h′) · a.

Since A is a left H-module, we have that h · (h′ · a) = (h h′) · a, so we con-
clude that (β⊗ IdH∗) ◦ β = (IdA ⊗ ∆H∗) ◦ β.

Finally, for a ∈ A we have

(IdA ⊗ εH∗) ◦ β(a) =
n

∑
i=1

hi · a⊗ εH∗( fi)

=
n

∑
i=1

hi · a⊗ fi(1H)

=
( n

∑
i=1

fi(1H)hi

)
· a⊗ 1R

= (1H · a)⊗ 1R

= a⊗ 1R

(1.5)

We check that the notions left H-module and right H-comodule are dual to
each other, in the sense that left H-module is equivalent to right H∗-comodule.
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Proposition 1.2.47. Let H be a finite R-Hopf algebra and let A be an R-module. Then,
A is a left H-module if and only if it is a right H∗-comodule. Furthermore, if it is the case,
the H-module and H∗-comodule structures on A are induced as in Proposition 1.2.46 by
each other.

Proof. The equivalence has been proved already. Let us consider the left H-
module structure H ⊗ A −→ A on A. Then, the induced right H∗-comodule
structure is given by

β(a) =
n

∑
i=1

(hi · a)⊗ fi, a ∈ A.

This coaction induces a left H-module structure given by

h(a) = ∑
(a)

a(0)⟨h, a(1)⟩.

By the definition of β,

h(a) =
n

∑
i=1

(hi · a)⟨h, fi⟩ =
(

n

∑
i=1
⟨ fi, h⟩ hi

)
· a = h · a

for every a ∈ A, so we recover the original left H-module structure on A.
Now, we consider the right H∗-comodule structure β : A −→ A ⊗ H∗ on A.

The induced left H-module structure is given by

h(a) = ∑
(a)

a(0)⟨h, a(1)⟩.

This action induces a right H∗-comodule structure given by

β′(a) =
n

∑
i=1

hi(a)⊗ fi

=
n

∑
i=1

∑
(a)

a(0)⟨hi, a(1)⟩

⊗ fi

= ∑
(a)

a(0)

(
n

∑
i=1
⟨a(1), hi⟩ ⊗ fi

)
= ∑

(a)
a(0) ⊗ a(1)

= β(a),

which is just the original right H∗-comodule structure.

2.9 Module and comodule algebras

In Section 2.8, A has been assumed to be an R-module with either module or
comodule structures over an R-Hopf algebra H, but no assumption on the inner
structure of A has been imposed. Now, let us suppose that A is in addition an
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R-algebra, so that it is endowed with multiplication and unit maps satisfying the
associative and unit properties. If A is a left H-module (resp. right H-comodule),
it admits an R-linear action (resp. coaction) which is well behaved with respect
to the algebra (resp. coalgebra) operations of H. The notions of left module al-
gebra and right comodule algebra arise when some compatibility conditions are
imposed between the Hopf algebra operations and the multiplication and unit
maps of A.

Definition 1.2.48. Let A be an R-algebra. We say that A is a left H-module algebra if it
is a left H-module and the following conditions are satisfied:

1. Given h ∈ H and a, b ∈ A,

h · (ab) = ∑
(h)

(h(1) · a)(h(2) · b).

2. For every h ∈ H,
h · 1A = εH(h)1A.

There is an equivalent definition in terms of the multiplication and the unit
maps of the R-algebra A.

Proposition 1.2.49. Let H be an R-Hopf algebra and let A be an R-algebra which is also
a left H-module with action denoted by ·. Then, A is a left H-module algebra if and only
if mA : A⊗ A −→ A and uA : R −→ A are left H-module homomorphisms.

Proof. First, we check that mA is a left H-module homomorphism if and only if
the condition 1 at Definition 1.2.48 holds. Let h ∈ H, a, b ∈ A and note that

mA(h · (a⊗ b)) = mA(∑
(h)

(h(1) · a)⊗ (h(2) · b)) = ∑
(h)

(h(1) · a) (h(2) · b),

h ·mA(a⊗ a′) = h · (ab).

Thus, h · (ab) = ∑(h)(h(1) · a) (h(2) · b) if and only if mA(h(a⊗ b)) = h ·mA(a⊗ b)
and we are done.

It remains to check that the uA is a left H-module homomorphism if and only
if the condition 2 at Definition 1.2.48 is satisfied. Assume that uA is a left H-
module homomorphism. Given h ∈ H,

h · 1A = h · uA(1R) = uA(h · 1R) = uA(ϵH(h) 1R) = ϵH(h) 1A.

Conversely, if 2 is satisfied, given h ∈ H and r ∈ R,

uA(h · r) = uA(εH(h)r) = εH(h) uA(r) = (h · 1A) uA(r) = h · uA(r).

Based on the equivalent definition of the left H-module algebra notion at
Proposition 1.2.49, we establish the one of right H-comodule algebra.

Definition 1.2.50. Let H be an R-Hopf algebra and let A be an R-algebra. We say that
A is a right H-comodule algebra if it admits right H-comodule structure and the maps
mA, uA are right H-comodule homomorphisms.
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As in the module algebra case, there is an equivalent definition.

Proposition 1.2.51. Let H be an R-Hopf algebra and let A be an R-algebra. Then, A is a
right H-comodule algebra if and only if the coaction β is a homomorphism of R-algebras.

Proof. Given a, b ∈ A, we have that β ◦mA(a⊗ b) = β(a b) and

(mA ⊗ IdH) ◦ βA⊗A(a⊗ b) = (mA ⊗ IdH)

 ∑
(a),(b)

a(0) ⊗ b(0) ⊗ (a(1) b(1))


= ∑

(a),(b)
a(0) b(0) ⊗ a(1) b(1)

=

∑
(a)

a(0) ⊗ a(1)

 ∑
(b)

b(0) ⊗ b(1)


= β(a) β(b),

so mA is an homomorphism of right H-comodules if and only if β(a b) = β(a) β(b)
for every a, b ∈ A.

On the other hand, we have that β ◦ uA(r) = β(r 1A) = r β(1A) and

(uA ⊗ IdH) ◦ βR(r) = (uA ⊗ IdH)(r⊗ uH(1R)) = uA(r)⊗ 1H = r 1A ⊗ 1H.

Thus, uA is an homomorphism of H-comodules if and only if β(1A) = 1A ⊗ 1H.
Then, A is a H-comodule algebra if and only if β(a b) = β(a) β(b) for every

a, b ∈ A and β(1A) = 1A ⊗ 1H, that is, β is a homomorphism of R-algebras.

We can complete Proposition 1.2.47 to the following.

Proposition 1.2.52. Let H be a finite R-Hopf algebra and let A be an R-algebra. Then
A is a left H-module algebra if and only if it is a right H∗-comodule algebra.

Proof. Assume that A is a right H∗-comodule algebra with coaction β : A −→
A⊗ H∗. Consider the left H-module structure on A as in Proposition 1.2.46, that
is,

h · a := ∑
(a)

a(0) ⟨h, a(1)⟩, h ∈ H, a ∈ A.

By Proposition 1.2.51, β is a homomorphism of R-algebras. This means that for
every a, b ∈ A,

β(ab) = ∑
(a,b)

a(0)b(0) ⊗ a(1)b(1).

Now, given f ∈ H∗ and a, b ∈ A, we have

h · (ab) = ∑
(a,b)

a(0)b(0)⟨h, a(1)b(1)⟩

= ∑
(a,b)

a(0)b(0) ∑
( f )
⟨h(1), a(1)⟩⟨h(2), b(1)⟩

= ∑
(h)

∑
(a,b)

a(0)⟨h(1), a(1)⟩b(0)⟨h(2), b(1)⟩

= ∑
(h)

(
∑
(a)

a(0)⟨h(1), a(1)⟩
)(

∑
(b)

b(0)⟨h(2), b(1)⟩
)

= ∑
(h)

(h · a)(h · b).
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On the other hand, since β(1A) = 1A ⊗ 1H∗ , for every h ∈ H we have

h · 1A = ⟨h, 1H∗⟩1A = εH(h)1A.

Suppose that A is a left H-module algebra. By Proposition 1.2.46, we have
that mA and uA are left H-module homomorphisms. We know from Proposition
1.2.47 that A is a right H∗-comodule with coaction

β(a) =
n

∑
i=1

(hi · a)⊗ fi.

Let us check that A is a right H∗-comodule algebra. By Proposition 1.2.51, it is
enough to check that β is a homomorphism of R-algebras. First, let us define a
map

Φ : A⊗ H∗ −→ HomR(H, A),
a⊗ f −→ h 7→ a⟨ f , h⟩.

This is clearly an R-linear map, and it is bijective because it has inverse

Ψ : HomR(H, A) −→ A⊗ H∗,
φ 7−→ ∑n

i=1 φ(hi)⊗ fi.

Indeed, given a⊗ f ∈ A⊗ H∗, we have

Ψ ◦Φ(a⊗ f ) =
n

∑
i=1

Φ(a⊗ f )(hi)⊗ fi

=
n

∑
i=1

a⟨ f , hi⟩ ⊗ fi

= a⊗
( n

∑
i=1
⟨ f , hi⟩ fi

)
= a⊗ f ,

and conversely, for any φ ∈ HomR(H, A) and h ∈ H,

Φ ◦Ψ(φ)(h) = Φ
( n

∑
i=1

φ(hi)⊗ fi

)
(h)

=
n

∑
i=1

φ(hi)⟨ fi, h⟩

= φ
( n

∑
i=1
⟨ fi, h⟩hi

)
= φ(h).

Since h is arbitrary, we conclude that Φ ◦Ψ(φ) = φ.
Let us check that β is a homomorphism of R-algebras. Given a, b ∈ A, we

shall prove that Φ(β(ab)) = Φ(β(a)β(b)). From the bijectivity of Φ, it will follow
that β(ab) = β(a)β(b).

First, we have

β(ab) =
n

∑
i=1

hi · (ab)⊗ fi.

40



Thus, given h ∈ H,

Φ(β(ab))(h) =
n

∑
i=1

hi · (ab)⟨ fi, h⟩.

Since ⟨ fi, h⟩ ∈ R,
n

∑
i=1

hi · (ab)⟨ fi, h⟩ =
( n

∑
i=1
⟨ fi, h⟩hi

)
· (ab) = h · (ab).

From this, we have that

h · (ab) = ∑
(h)

(h(1) · a)(h(2) · b)

because A is a left H-module algebra. Now, writing elements of h with respect to
{hi, fi}n

i=1, we obtain

∑
(h)

(h(1) · a)(h(2) · b) = ∑
(h)

( n

∑
i=1
⟨ fi, h(1)⟩hi

)
· a
( n

∑
j=1
⟨ f j, h(2)⟩hj

)
· b.

Again, since the expressions in brackets belong to R, we have

∑
(h)

( n

∑
i=1
⟨ fi, h(1)⟩hi

)
· a
( n

∑
j=1
⟨ f j, h(2)⟩hj

)
· b = ∑

(h)

( n

∑
i=1

(hi · a)⟨ fi, h(1)⟩
)( n

∑
j=1

(hj · b)⟨ f j, h(2)⟩
)

= ∑
(h)

n

∑
i,j=1

(hi · a)(hj · b)⟨ fi, h(1)⟩⟨ f j, h(2)⟩

=
n

∑
i,j=1

(hi · a)(hj · b)∑
(h)
⟨ fi, h(1)⟩⟨ f j, h(2)⟩

Note that

∑
(h)
⟨ fi, h(1)⟩⟨ f j, h(2)⟩ = ( fi ⊗ f j)

(
∑
(h)

h(1) ⊗ h(2)
)

= ( fi ⊗ f j)∆H(h)

= mH∗( fi ⊗ f j)(h)

= ⟨ fi f j, h⟩.
Therefore,

n

∑
i,j=1

(hi · a)(hj · b)∑
(h)
⟨ fi, h(1)⟩⟨ f j, h(2)⟩ =

n

∑
i,j=1

(hi · a)(hj · b)⟨ fi f j, h⟩.

Since

β(a)β(b) =
n

∑
i,j=1

(hi · a)(hj · b)⊗ fi f j,

we see that
n

∑
i,j=1

(hi · a)(hj · b)⟨ fi f j, h⟩ = Φ(β(a)β(b))(h).

Going through the chain of equalities, we conclude that

Φ(β(ab))(h) = Φ(β(a)β(b))(h),

for every h ∈ H, from which the desired equality follows.
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