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Chapter 1

Preliminaries on Galois theory and
Hopf algebras

1 Field theory and Galois theory

Field theory is motivated by the study of algebraic equations and their solutions, or
equivalently, the study of polynomials and their roots. The easiest example is that
of a second degree polynomial

ax2 + bx + c, a, b, c ∈ Q

for which the expression

x =
−b±

√
b2 − 4ac

2a
(1.1)

provides its two roots. If b2 − 4ac is not the square of an integer, these roots are not
rational numbers, but in any case they they lie in a field properly containing Q. The
usual situation is that an equation with coefficients in a field K has its solutions in
a bigger field L. This is why the basic notion in field theory is that of extensions of
fields.

Definition 1.1.1. An extension of fields is a pair (L, K) where L and K are fields such that
there is a ring monomorphism (or embedding) ι : K ↪→ L. We will say that L/K is an
extension of fields (or simply an extension) or that L is a field extension of K.

Typically, the embedding ι : K ↪→ L will be just the inclusion, which corresponds
to the situation in which K ⊆ L. For convenience, and unless specified otherwise,
we will always assume we are in this situation.

1.1 Finite and algebraic extensions

If L/K is an extension of fields, L is naturally endowed with K-vector space struc-
ture.

Definition 1.1.2. Let L/K be an extension of fields.

1. The degree of L/K, denoted by [L : K], is defined as the dimension of L as a K-vector
space.
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2. We say that L/K is finite if its degree [L : K] is finite.

3. We say that L/K is quadratic (resp. cubic, resp. quartic) if [L : K] = 2 (resp.
[L : K] = 3, resp. [L : K] = 4).

Example 1.1.3. 1. C/Q and R/Q are extensions of fields with infinite degree.

2. C/R is a quadratic field extension, since C has basis {1, i} as an R-vector
space.

When we have fields L, E and K such that K ⊆ E ⊆ L, we will say that E is an
intermediate field of the extension L/K.

Proposition 1.1.4 (Multiplicativity of degrees). Let E be an intermediate field on L/K.
The extension L/K is finite if and only if so are L/E and E/K. In that case,

[L : K] = [L : E][E : K]

Among the real numbers, we usually distinguish between rationals and irra-
tionals. But also, among the irrational numbers, there are those that are roots of
polynomials with rational coefficients (such as those expressed by radicals), which
are called algebraic, and those that do not enjoy this property (like e or π), called
transcendental. More generally:

Definition 1.1.5. Let L/K be an extension of fields.

1. We say that α ∈ L is algebraic over K if it is a root of some non-zero polynomial
f ∈ K[X]. Otherwise, we will say that α is transcendental.

2. We say that L/K is algebraic if all elements of L are algebraic over K.

There is the following basic result.

Proposition 1.1.6. Any finite field extension is algebraic.

The converse does not hold in general. For instance, the field of complex alge-
braic numbers over Q is an algebraic extension of Q that is not finite.

1.2 Subfield generated by a subset

We can construct easily finite extensions of fields from a field K and a subset of a
field extension L of K.

Definition 1.1.7. Let L/K be an extension of fields and let S be a subset of L. The subfield
of L generated by K and S, denoted by K(S), is defined as the intersection of all subfields of
L containing K of S.

The subfield of L generated by K and S can also be seen as the minimal subfield
of L containing both K and S.

Suppose that S = {α1, . . . , αn}. It is routine to check that

K(S) =
{ f (α1, . . . , αn)

g(α1, . . . , αn)
: f , g ∈ K[X1, . . . , Xn], g(α1, . . . , αn) ̸= 0

}
.

We will also denote K(S) ≡ K(α1, . . . , αn).
When the elements of S are algebraic, then K(S) is actually the minimal subring

of L containing both K and S. Thus, in order to describe the elements of K(S), it is
enough to consider polynomial expressions of the elements of S.
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Proposition 1.1.8. Let L/K be a field extension and let S = {α1, . . . , αn} ⊂ L be a set of
algebraic elements over K. Then

K(S) =
{

f (α1, . . . , αn) : f ∈ K[X1, . . . , Xn]
}

.

Example 1.1.9. 1. Let f (x) = x2 + ax + b with a, b ∈ Q be a monic quadratic
polynomial and let α be a root of f , that is,

α ∈
{−a +

√
a2 − 4b

2
,
−a−

√
a2 − 4b

2

}
.

It can be easily checked that Q(α) = Q(
√

a2 − 4b). Now, since
√

a2 − 4b is
algebraic,

Q(
√

a2 − 4b) = {x + y
√

a2 − 4b | x, y ∈ Q}.

As a Q-vector space, this has Q-basis {1,
√

a2 − 4b}. Therefore, Q(α)/Q is a
quadratic extension of Q.

2. Let L = Q(
√

3,
√

5). Since
√

3 and
√

5 are algebraic,

L = {a + b
√

3 + c
√

5 + d
√

15 | a, b, c, d ∈ Q}.

We see that {1,
√

3,
√

5,
√

15} is a Q-basis of L, so L/Q is a quartic extension.

3. The field Q(π) is the subfield of R generated by Q and π. It is not algebraic
over Q, since π is transcendental.

Normally, in field theory, to verify a property in an extension K(S)/K, it is
enough to verify it for S. This is the case for the algebraic property.

Proposition 1.1.10. Let L/K be an extension of fields and let S ⊆ L be such that L = K(S).
If all the elements of S are algebraic over K, then L/K is an algebraic extension.

1.2.1 Simple and finitely generated extensions

Definition 1.1.11. Let L/K be an extension of fields.

1. We say that L/K is simple if there is some α ∈ L such that L = K(α). In that case,
we will say that α is a primitive element of L/K.

2. We say that L/K is finitely generated if there are α1, . . . , αn ∈ L such that L =
K(α1, . . . , αn).

Before, we saw that every finite extension is algebraic but the converse does not
hold. In fact, the notion of finite generation provides a characterization.

Proposition 1.1.12. An extension of fields L/K is finite if and only if it is algebraic and
finitely generated.

In particular, if L/K is finite, then it is finitely generated, but the converse in
general does not hold (the extension Q(π)/Q above serves as a counterexample).
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1.2.2 The compositum of fields

Let L/K be an extension of fields and let E and F be intermediate fields of L/K.
In Definition 1.1.7, we may take E as ground field and S = F, so that E(F) is the
minimal subfield of L containing both E and F. Now, changing the roles of E and F,
F(E) is also the minimal subfield of L containing both E and F, so E(F) = F(E).

Definition 1.1.13. Let K be a field with algebraic closure K. Let E and F be two extensions
of K contained in K. The compositum of E and F is the minimal subfield of K containing
both E and F.

If E = K(α1, . . . , αn) and F = K(β1, . . . , βm), then

EF = K({αiβ j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}).

1.3 Minimal polynomial of an element

Let L/K be an algebraic extension and fix α ∈ L. Let us consider the map

Φα : K[X] −→ L
f (X) 7−→ f (α) .

It is a ring homomorphism with kernel

Ker(Φα) = { f ∈ K[X] | f (α) = 0}.

Recall that K[X] is a principal ideal domain (PID). Then, Ker(Φα) is a principal ideal,
that is, it is generated by a single polynomial. If f is such a generator and u ∈ K×,
then u f is another generator. If we multiply by the inverse of the leading coefficient
of f , we obtain a monic polynomial, which is the only monic generator of Ker(Φα).

Definition 1.1.14. Let L/K be an algebraic extension and let α ∈ L. The minimal polyno-
mial of α over K, denoted by min.poly.(α, K), is the monic generator of Ker(Φα).

The minimal polynomial of α over K is equivalently defined as the monic poly-
nomial in K[X] with minimal degree having α as a root, and therefore it is irreducible
over K. Its degree is actually the degree of K(α):

Proposition 1.1.15. Let L/K be an extension and let α ∈ L be an algebraic element over
K. Then, K(α)/K is a finite extension and

[K(α) : K] = deg(min.poly.(α, K)).

Moreover, calling n := [K(α) : K], {xi}n−1
i=0 is a K-basis of K(α).

We say that any two roots of the same minimal polynomial are conjugate.

1.4 Embeddings, isomorphisms and automorphisms of fields

In our context, an embedding is nothing but an injective homomorphism (i.e, a
monomorphism) of fields τ : L ↪→ E. Note that the requirement of injectivity is
equivalent to σ being non-trivial, since its kernel is either 0 or L.
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Definition 1.1.16. Let τ : L ↪→ E be an embedding and let K be a subfield of L. If τ(x) = x
for all x ∈ K, we will say that τ is a K-embedding.

Following the usual terminology, a bijective K-embedding is a K-isomorphism.
Two fields are said to be K-isomorphic if there exists a K-isomorphism between
them. A K-automorphism is a K-isomorphism τ : L −→ L. The group of K-automorphisms
of L will be denoted by AutK(L).

Definition 1.1.17. Let σ : K ↪→ E and τ : L ↪→ E be two embeddings. We say that τ is an
extension of σ if K ⊆ L and τ |K= σ.

Theorem 1.1.18. Let L/K be an algebraic extension, and let E be a field such that there is
an embedding σ : K ↪→ E. Let S ⊆ L be such that L = K(S). If all the polynomials in
{min.poly.(α, K) | α ∈ S} have all their roots in L, there is some embedding τ : L ↪→ E
that extends σ.

1.5 Splitting fields and algebraic closure

As already mentioned, a quadratic polynomial with rational coefficients may not
have its roots in Q, which is in fact the usual situation. Instead, its roots lie in a
quadratic field. More generally:

Theorem 1.1.19 (Fundamental theorem of algebra). The roots of a polynomial with co-
efficients in the field C of complex numbers lie in C.

Some people say the name of this theorem is unfortunate: it is not fundamental,
nor it is of algebra. In our case, it provides an illustration of the concepts we consider
in this part.

Definition 1.1.20. We say that a field K is algebraically closed if every polynomial with
coefficients in K has all its roots in K.

The fundamental theorem of algebra just states that C is algebraically closed. Ac-
tually, there is a smaller field that is algebraically closed; namely, the field of complex
algebraic numbers. Since it is algebraic over Q, it is obtained from adjoining to Q the
roots of all polynomials with rational coefficients. This is what we call an algebraic
closure of Q. In general:

Definition 1.1.21. An algebraic closure of a field K is an algebraically closed field L such
that L/K is an algebraic extension.

Theorem 1.1.22 (Steinitz). A field K possesses an algebraic closure and it is unique up to
K-isomorphism.

In particular, if f has its coefficients in a subfield K of the field of algebraic num-
bers, all its roots are algebraic numbers. In general, for any other field, we can find
an extension with this property.

Proposition 1.1.23. Let K be a field. There is a field extension L of K such that every
polynomial f ∈ K[X] has all its roots in L.

This allows us to make the following definition.
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Definition 1.1.24. Let L/K be an extension of fields. Let F ⊆ K[X] and let S be the set of
the roots of all polynomials in F . We say that L is a splitting field of F over K if L = K(S).

Note that if we choose F = K[X], we recover the notion of algebraic closure. As
in that case, the splitting field always exists and is essentially unique.

Proposition 1.1.25. Let K be a field and let F ⊆ K[X] be a subset of non-constant polyno-
mials. Then, there is a splitting field of F over K and it is unique up to K-isomorphism.

Example 1.1.26. The polynomial f (x) = x4− 2 has roots± 4
√

2,±i 4
√

2, so its splitting
field over Q is Q( 4

√
2, i).

1.6 Normal extensions

The class of normal extensions is fundamental in order to understand the notion of
Galois extension. It is defined as follows.

Definition 1.1.27. Let L/K be an algebraic extension and let L be an algebraic closure of L.
We say that L/K is normal if for every K-embedding σ : L −→ L we have that σ(L) = L
(equivalently, σ ∈ AutK(L)).

In other words, the normal extensions of K are those that are invariant under
K-embeddings, which turn out to be K-automorphisms. There are many characteri-
zations for normality, but we will just stand with this one.

Proposition 1.1.28. Let L/K be an algebraic extension. Then L/K is normal if and only if
for every polynomial f ∈ K[X] with some root in L, f possesses all its roots in L.

The explanation lies in the fact that the image of a root of a polynomial f ∈ K[X]
by an embedding σ : L −→ L is necessarily a root of f . Moreover:

Proposition 1.1.29. Let L/K be a normal extension and let α, β ∈ L be elements with the
same minimal polynomial over K. Then, there is some σ ∈ AutK(L) such that σ(α) = β.

Example 1.1.30. 1. Every quadratic extension L/K is normal. Indeed, there is
n ∈ K such that L = K(

√
n), and given an embedding σ : L −→ L, we have

σ(
√

n) = −
√

n, so σ(L) = L.

2. Let α = 3
√

2 be the real root of x3− 2. Then Q(α)/Q is not normal, because ζ3α

is another root of x3 − 2, where ζ3 = −1+
√
−3

2 , and ζ3α /∈ Q(α).

It is not true that the class of normal extensions is transitive, that is, for fields
K ⊆ E ⊆ L, it may happen that L/K is normal but E/K is not. However, we have
the following result.

Proposition 1.1.31. Let K, L and E be fields with K ⊆ E ⊆ L. If L/K is normal, then so is
L/E.

There is a notion of normal closure.

8



Definition 1.1.32. Let L/K be an algebraic extension. We say that a normal extension
N of K containing L is a normal closure of L/K if it is the smallest extension of K with
this property. More accurately, for every normal extension N′/K and every K-embedding
σ : L ↪→ N′ there is some K-embedding τ : N ↪→ N′ making the following diagram com-
mutative:

L �
� //

σ   

N

τ
��

N′

In these notes, we will usually write L̃ for the normal closure of a field exten-
sion L/K. The following result provides a method to find a normal closure, and in
particular, it proves its existence.

Proposition 1.1.33. Let L/K be an algebraic extension and let S ⊆ L be such that L =
K(S). A normal closure of L/K is the splitting field of F = {min.poly.(α, K) | α ∈ S}
over K.

As in the case of the algebraic closure, the uniqueness is up to K-isomorphisms.

Proposition 1.1.34. The normal closure of an algebraic extension L/K is unique up to
K-isomorphism.

Example 1.1.35. 1. If L/K is a normal extension, its normal closure is L̃ = L.

2. Let L = Q(α) where α is the real root of x3 − 2. The other conjugates of α are
ζ3α and ζ2

3α. Therefore, the normal closure of L/Q is L̃ = Q(α, ζ3).

1.7 Separable extensions

The notion of separability for an extension is related with the (absence of) multiplic-
ity of roots.

Definition 1.1.36. Let K be a field. We say that a polynomial f ∈ K[X] is separable if it
does not possess multiple roots in an algebraic closure of K.

Equivalently, a polynomial f ∈ K[X] is separable if it has no multiple roots in
any extension of K where f has all its roots (such as the splitting field of f over K).

Definition 1.1.37. Let L/K be an algebraic extension of fields.

1. We say that an element α ∈ L is separable if min.poly.(α, K) is separable.

2. We say that L/K is separable if every element of L is separable.

As in the case of algebraic extensions, the class of separable extensions is transi-
tive.

Proposition 1.1.38. Suppose that L, K, E are fields with K ⊆ E ⊆ L. Then L/K is separa-
ble if and only if L/E and E/K are separable.

For a polynomial f with coefficients in a field K, let us write f ′ for the formal
derivative of f . Then, f has no multiple roots in an algebraic closure if and only if f
and f ′ have no common factors other than constants.
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Definition 1.1.39. A field K is said to be perfect if every algebraic extension of K is separable.

Recall that the characteristic of a field K, denoted char(K), is the smallest non-
negative integer n such that n1 = 0, and it is either 0 (if there is no such an n) or a
prime p.

Proposition 1.1.40. Fields with characteristic zero and finite fields are perfect.

We finish the section with the following important theorem.

Theorem 1.1.41 (Primitive element theorem). A finite and separable extension is simple,
that is, it admits some primitive element.

Since Q has characteristic zero, every algebraic extension of Q is separable. In
particular, every finite extension of Q is simple.

1.8 Galois extensions

Given a polynomial f ∈ K[X], we would be happy with a formula as (1.1): an ex-
pression that provides all its roots after a finite number of calculations. This is also
the situation with degree 3 and 4 equations, but from degree 5 on it does not hold
in general. A characterization for the existence of such an expression was found by
Galois, whose main idea was to study the permutations of the roots that preserve
the algebraic operations between them. In the modern language, these are the au-
tomorphisms of the field generated by Q and the roots. His findings motivated the
development of the so called Galois theory.

Definition 1.1.42. Let L/K be an extension of fields. We say that L/K is Galois if it is
normal and separable.

Note that joining Propositions 1.1.31 and 1.1.38, we obtain:

Corollary 1.1.43. Let K, L and E be fields with K ⊆ E ⊆ L. If L/K is Galois, then so is
L/E.

We have seen that an algebraic extension L/K is normal if for every f ∈ K[X], f
has all its roots in L. On the other hand, L/K is separable if for every f ∈ K[X], the
roots of f in an algebraic closure are all different. We deduce:

Corollary 1.1.44. Let L/K be a finite Galois extension of degree n. Then L/K possesses n
different embeddings, all of which are K-automorphisms.

It is the group of these K-automorphisms what we define as the Galois group.

Definition 1.1.45. Let L/K be a Galois extension. The Galois group of L/K, denoted
Gal(L/K), is defined as the group of K-automorphisms of L.

For a Galois extension L/K with Galois group G, we will sometimes say that
L/K is G-Galois.

Note that for an extension L/K which is not Galois, it makes perfect sense to
consider the group of K-automorphisms of L. Sometimes, in literature, the Galois
group is defined as such regardless of whether the extension is Galois or not. Even
though this is not our choice, such a group can be used to give a characterization for
the Galois condition.
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Proposition 1.1.46. Let L/K be an algebraic extension and let G = AutK(L). Denote

LG := {x ∈ L | σ(x) = x for all σ ∈ G}.

Then L/K is Galois if and only if LG = K.

The fact, observed by Galois, that the permutations of the roots preserving the
algebraic structure form a group, can be formulated in the modern language as fol-
lows.

Theorem 1.1.47 (Galois). Let L/K be a degree n Galois extension with group G and let
f ∈ K[X] be a degree n irreducible polynomial with roots in L. Then G permutes transitively
the roots of f , so there is a group monomorphism G ↪→ Sn by which G maps to a transitive
group.

Remark 1.1.48. Suppose that S = {α0, . . . , αn−1} is the set of roots of f . If the degree
of L/K is a prime number p, then G is isomorphic to a transitive subgroup of

{Πr,s | r, s ∈ Z, gcd(r, p) = 1},

where for each r, s ∈ Z with gcd(r, n) = 1, Πr,s is the permutation of the roots αi
defined by Πr,s(αi) = αri+s, where subscripts are considered mod p.

The utility of the Galois group is that it encodes information on the extension to
which it refers. For instance, we have the following facts, that are very useful when
one computes Galois groups.

Proposition 1.1.49. Let L/K be in the conditions of Theorem 1.1.47. Then, G embeds into
An if and only if its discriminant is the square of some element in K.

Recall that the discriminant of a polynomial f ∈ K[x] is defined as

disc( f ) = ∏
1≤i<j≤n

(αi − αj)
2,

where α1, . . . , αn are the roots of f .
A more important illustration of the above mentioned phenomenon is that the

subgroups of a Galois group are in bijective correspondence with the intermediate
fields of the extension to which it refers. This result is commonly known as the
fundamental theorem of Galois theory.

Definition 1.1.50. Let L/K be a Galois extension with group G and let H be a subgroup of
G. The subfield of L fixed by H is defined as

LH = {α ∈ L : σ(α) = α for all σ ∈ H}.

We will also denote the fixed subfield LH as Fix(L, H), or simply Fix(H) when L
is implicit in the context.

It is routine to check that a fixed subfield is actually a field.

Theorem 1.1.51 (Fundamental theorem of Galois theory). Let L/K be a finite Galois
extension. The following statements hold:
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1. There is a bijective inclusion-reversing correspondence

{Subgroups of Gal(L/K)} −→ {Intermediate fields of L/K}
H 7−→ LH

Gal(L/E) ←− [ E

2. Given an intermediate field E of L/K, E/K is Galois if and only if Gal(L/E) is a
normal subgroup of Gal(L/K). In that case, the map

Gal(L/K) −→ Gal(E/K)
σ 7−→ σ |E

induces a group isomorphism Gal(L/K)/Gal(L/E) ∼= Gal(E/K).

1.9 Infinite Galois theory

The fundamental theorem of Galois theory does not necessarily hold for Galois ex-
tensions that are not finite: even though the notions of fixed fields and Galois group
make perfect sense for infinite extensions, there may be subgroups of the Galois
group that do not correspond to any intermediate field. Nevertheless, it is possible
to generalize the theorem to arbitrary Galois extensions by means of endowing the
Galois group with a topology, so that it becomes a topological group.

Let us briefly review the notions of topological and profinite group.

Definition 1.1.52. A topological group is a group G together with a topology on G in such
a way that the multiplication map (σ, τ) ∈ G × G 7−→ στ ∈ G and the inverse map
σ ∈ G 7−→ σ−1 ∈ G are continuous.

There is a natural notion for homomorphisms between these objects. Namely, if
G and G′ are topological groups, a map f : G −→ G′ is a homomorphism of topolog-
ical groups if f is a homomorphism of groups and a continuous map with respect
to the topologies on G and G′. We will say that f is an isomorphism of topological
groups if it is an isomorphism of groups and a homeomorphism.

Definition 1.1.53. A profinite group is a topological group G which is compact, Hausdorff
and such that the identity 1G admits a system of open neighbourhoods that are normal sub-
groups of G.

Proposition 1.1.54. For a topological group G, the following statements are equivalent:

1. G is profinite.

2. G is compact, Hausdorff and totally disconnected.

3. G is the projective limit of finite groups.

For the benefit of the reader, we recall briefly the notion of projective limit of
groups.

Definition 1.1.55. Let (I,≤) be a directed poset (i.e,≤ is a pre-order and every finite subset
of I has an upper bound). Let (Gi)i∈I be a family of groups and suppose that for each i, j ∈ I
with i ≤ j there is a morphism fij : Gj −→ Gi.
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1. We say that {Gi, fij}i,j∈I is a projective system if fii = IdGii and fik = fij ◦ f jk for all
i, j, k ∈ I with i ≤ j ≤ k.

2. The projective limit of a projective system {Gi, fij}i,j∈I is defined as the group

lim
←−
i∈I

Gi := {(ai)i∈I ∈∏
i∈I

Gi | fij(aj) = ai for all i, j ∈ I with i ≤ j}.

Thus, Proposition 1.1.54 shows that a finite group is necessarily profinite.
Now, let L/K be a Galois extension with group G. We shall endow G with a

natural topology, called the Krull topology. For a detailed exposition, see [Neu99,
Chapter IV, §1]. Let us write F for the family of intermediate fields E of L/K such
that E/K is a finite Galois subextension of L/K.

Definition 1.1.56. The Krull topology on G is defined as the topology of G for which a basis
of open neighbourhoods of an element σ ∈ G is formed by the left cosets

σGal(L/E), E ∈ F .

A Galois group G endowed with the Krull topology is a topological group. What
is more, it is a profinite group. This will follow from the following result, in which
we express G as a projective limit of finite groups.

Theorem 1.1.57. Let L/K be a Galois extension.

1. The set F together with the restriction maps πL,L′ : Gal(L′/K) −→ Gal(L/K),
where L, L′ ∈ F and L ⊆ L′, form a projective system.

2. There is an isomorphism of topological groups Gal(L/K) ∼= lim
←−
E∈F

Gal(E/K).

The correspondence theorem for arbitrary Galois extensions is as follows.

Theorem 1.1.58. Let L/K be a Galois extension.

1. There is a bijective inclusion-reversing correspondence

{Closed subgroups of Gal(L/K)} −→ {Intermediate fields of L/K}
H 7−→ LH

Gal(L/E) ←− [ E

Under this correspondence, the closed subgroups of Gal(L/K) that are also open cor-
respond to the finite subextensions of L/K.

2. Given an intermediate field E of L/K, E/K is Galois if and only if Gal(L/E) is a
normal subgroup of Gal(L/K). In that case, the map

Gal(L/K) −→ Gal(E/K)
σ 7−→ σ |E

induces an isomorphism of topological groups Gal(L/K)/Gal(L/E) ∼= Gal(E/K).

13



2 Hopf algebras and their actions on modules

In this section we will introduce the notion of Hopf algebra. It is a versatile object
that appears in several areas of mathematics. Our interest in them is due to their
connection with group theory. Throughout this section, R will be a commutative
ring with unity 1 ≡ 1R and unadorned tensor products will be taken over R.

2.1 Basic definitions

Definition 1.2.1. An R-Hopf algebra is a 6-uple (H, mH, uH, ∆H, εH, SH) where:

1. H is an R-module.

2. mH : H ⊗ H −→ H and uH : R −→ H are R-linear maps that satisfy:

(a) (Associative property) Given a, b, c ∈ H,

mH ◦ (mH ⊗ IdH)(a⊗ b⊗ c) = mH ◦ (IdH ⊗mH)(a⊗ b⊗ c).

Equivalently, the following diagram is commutative:

H ⊗ H ⊗ H

mH⊗IdH

��

IdH⊗mH // H ⊗ H

mH

��
H ⊗ H

mH // H

(b) (Unit properties) Given a ∈ H and r ∈ R,

mH ◦ (uH ⊗ IdH)(r⊗ a) = r a = mH ◦ (IdH ⊗ uH)(a⊗ r).

Equivalently, the following diagrams are commutative:

H ⊗ R

s2

��

IdH⊗uH // H ⊗ H

mH

{{
H R⊗ Hs1
oo

uH⊗IdH

OO

where s1 : R ⊗ H −→ H and s2 : H ⊗ R −→ H are defined by s1(r ⊗ a) =
r a = s2(a⊗ r).

The map mH is called multiplication map, and uH is called unit map.

3. ∆H : H −→ H ⊗ H and εH : H −→ R are R-linear maps that satisfy:
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(a) (Coassociative property) For all h ∈ H,

(IdH ⊗ ∆H)∆H(h) = (∆H ⊗ IdH)∆H(h).

Equivalently, there is a commutative diagram:

H ⊗ H ⊗ H H ⊗ H
IdH⊗∆Hoo

H ⊗ H

∆H⊗IdH

OO

H
∆Hoo

∆H

OO

(b) (Counit properties) For all h ∈ H,

(εH ⊗ IdH)∆H(h) = 1⊗ h,

(IdH ⊗ εH)∆H(h) = h⊗ 1.

Equivalently, the following diagrams are commutative:

H ⊗ R H ⊗ H
IdH⊗εHoo

εH⊗IdH

��
H

−⊗1

OO

∆H

;;

1⊗−
// R⊗ H

The map ∆H is called comultiplication map and εH is called counit map or aug-
mentation.

4. ∆H and εH are ring homomorphisms, where H is endowed with the ring structure
induced by the maps mH and uH, and H ⊗ H is endowed with the ring structure in-
duced by the one at H.

5. SH : H −→ H is an R-linear map, called coinverse map or antipode satisfying the
following property:

mH ◦ (IdH ⊗ SH) ◦ ∆H(h) = εH(h) 1H = mH ◦ (SH ⊗ IdH) ◦ ∆H(h), h ∈ H.

If 1 and 2 hold, we say that (H, mH, εH) is an R-algebra.
If 1 and 3 hold, we say that (H, ∆H, εH) is an R-coalgebra.
If 1-4 hold, we say that (H, mH, uH, ∆H, εH) is an R-bialgebra.

We will usually refer to an R-Hopf algebra (H, mH, uH, ∆H, εH, SH) just as H,
leaving implicit the R-Hopf algebra operations.

Let H be an R-Hopf algebra. The R-module structure of H will be called the
underlying module of the R-Hopf algebra H. On the other hand, the operation

ab := mH(a⊗ b), a, b ∈ H

15



endows H with a ring structure, called the underlying ring of the R-Hopf algebra
H. This is the ring structure at H mentioned at 4. Since we have assumed that R
is a ring with unity, the underlying ring of an R-Hopf algebra has always a unity,
namely 1H = uH(1R). Indeed,

1Ha = uH(1R)a = mH(uH(1R)⊗ a) = mH(uH ⊗ IdH)(1R ⊗ a) = 1Ra = a,

and similarly a1H = a.

Definition 1.2.2. Let M be an R-module. The twist map of M is the map τ : M⊗M −→
M⊗M defined by

τ(a⊗ b) = b⊗ a

for every a, b ∈ M.

Definition 1.2.3. Let H be an R-Hopf algebra.

1. We say that H is commutative if mH ◦ τ = mH. Equivalently, the underlying ring
structure of H is commutative.

2. We say that H is cocommutative if τ ◦ ∆H = ∆H.

2.2 First examples

Example 1.2.4. A commutative ring R with unity is an R-Hopf algebra over itself,
called the trivial Hopf algebra.

Example 1.2.5 ([Und15], Example 3.1.4). Let H = R[x, y]/⟨xy − 1⟩. This can be
naturally endowed with R-algebra structure. Define ∆H : H −→ H ⊗ H by

∆H(x) = x⊗ x, ∆H(y) = y⊗ y,

εH : H −→ R by
εH(x) = 1, εH(y) = 1

and SH : H −→ H by
SH(x) = y, SH(y) = x.

Then H is a commutative and cocommutative R-Hopf algebra.

The example of Hopf algebra that is of our interest is the following.

Definition 1.2.6. Let G be a group. The R-group algebra of G with coefficients in R,
denoted R[G], is the set

R[G] =
{

∑
g∈G

agg | ag ∈ R, ag = 0 for all but finitely many g ∈ G
}

.

If the group G is finite, the last condition is vacuous. Note that R[G] is free as an
R-module, and a basis is formed by the elements of G. This is a very useful fact: it
means that any R-linear notion or result referring to R[G] can be reduced to stating
or proving it for the elements of G. The same holds for tensor products of group
algebras.
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Proposition 1.2.7. Let G be a finite group. Then R[G] is an R-Hopf algebra with the
following operations:

1. Multiplication map defined by mR[G](g⊗ h) = gh for every g, h ∈ G and unit map
given by uR[G](r) = r1G.

2. Comultiplication given by ∆R[G](g) = g ⊗ g for every g ∈ G and counit given by
εR[G](g) = 1 for every g ∈ G.

3. Antipode SR[G] : R[G] −→ R[G] defined by SR[G](g) = g−1 for all g ∈ G and
extended by R-linearity.

Proposition 1.2.8. Let G be a group.

1. R[G] is commutative if and only if G is abelian.

2. R[G] is cocommutative.

3. If G is finite, R[G] is a free R-module with rank |G|.

The proof of these two results is a routine check that is left to the reader.
If R = K is a field, Proposition 3 is the statement that K[G] is a K-vector space

with dimension |G|.

2.3 Homomorphisms of Hopf algebras

We have defined a Hopf algebra as a structure composed by more simple structures.
In the same way, the notion of a homomorphism of a Hopf algebras arises naturally
as a homomorphism between these structures.

Definition 1.2.9. An R-Hopf algebra homomorphism between two R-Hopf algebras H, H′

is a map f : H −→ H′ such that:

1. f is an R-linear map between the underlying R-module structures of H and H′.

2. f is a homomorphism between the underlying ring structures of H and H′, that is:

(a) f ◦mH = mH′ ◦ ( f ⊗ f ).

(b) f ◦ uH = uH′ .

3. f preserves the comultiplication and the counit of H, meaning that:

(a) ∆H′ ◦ f = ( f ⊗ f ) ◦ ∆H.

(b) εH = εH′ ◦ f .

4. f preserves the antipode of H, meaning that f ◦ SH = SH′ ◦ f .

If f satisfies 1 and 2, we say that f is a homomorphism of R-algebras.
If f satisfies 1 and 3, f is said to be a homomorphism of R-coalgebras.
If f satisfies 1-3, we will say that f is a homomorphism of R-bialgebras.
In all these cases, H and H′ can be required to be just R-algebras, R-coalgebras or R-

bialgebras, respectively.

17



The conditions 2a and 2b are equivalent to the commutativity of these diagrams:

H
f

// H′

H ⊗ H

mH

OO

f⊗ f
// H′ ⊗ H′

mH′

OO H
f

// H′

R
mH

__

mH′

>>

Likewise, the conditions 3a and 3b are equivalent to the commutativity of these
other diagrams:

H
f

//

∆H
��

H′

∆H′
��

H ⊗ H
f⊗ f
// H′ ⊗ H′

H
f

//

∆H ��

H′

∆H′~~
R

As for the condition 4, it is equivalent to the commutativity of this diagram:

H
f
//

SH
��

H′

SH′
��

H
f
// H′

We use the terminology of R-Hopf algebra monomorphisms, epimorphisms, en-
domorphisms and automorphisms in the usual way.

Definition 1.2.10. We say that two R-Hopf algebras H and H′ are isomorphic if there is
some isomorphism of R-Hopf algebras f : H −→ H′.

2.4 Sub-Hopf algebras

It is usual, when an algebraic structure is introduced, that we consider its substruc-
tures. In this section, we shall view the notion of R-sub-Hopf algebra of an R-Hopf
algebra. Fix an R-Hopf algebra H. Following the pattern viewed in other algebraic
structures (groups, rings, vector spaces, etc), we may think of an R-sub-Hopf alge-
bra of H as a subset B ⊆ H inheriting the Hopf algebra structure of H. This would
mean that we can restrict the Hopf algebra operations of H successfully so that they
endow B with Hopf algebra structure. However, there is a technical difficulty at this
point, and is related with the presence of the tensor product in the Hopf algebra
operations. Namely, if B ⊆ H, the canonical inclusion i : B ↪→ H induces the map

i⊗ i : B⊗ B −→ H ⊗ H,
s⊗ s −→ i(s)⊗ i(s),

but in general i ⊗ i is not injective. Thus, for those cases in which indeed i ⊗ i is
not injective, it does not make sense to wonder whether the multiplication map
mH : H ⊗ H −→ H of H restricts to B, since B ⊗ B is not a subset of H ⊗ H. Like-
wise, it does not make sense to ask if the image of B by the comultiplication map
∆H : H −→ H ⊗ H lies in B⊗ B.
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Definition 1.2.11. Let H be an R-Hopf algebra and let B be an R-submodule of H. Let
i : B −→ H be the canonical inclusion and suppose that i⊗ i is injective. We say that B is
an R-sub-Hopf algebra of H if:

1. mH(B⊗ B) ⊂ B and 1H ∈ B.

2. ∆H(B) ⊂ B⊗ B.

3. SH(B) ⊂ B.

In that case, the Hopf algebra operations of B are obtained by restricting those of H. Namely:

• Multiplication map: mB := mH |B⊗B : B⊗ B −→ B.

• Unit map uB := uH : R −→ B.

• Comultiplication map: ∆B := ∆H |B : B −→ B⊗ B.

• Counit map: εB := εH |B : B −→ R.

• Coinverse map: SB := SH |B : B −→ B.

The injectivity of i⊗ i is not restrictive at all. We can regard i⊗ i as the composi-
tion

B⊗ B
i⊗IdB // H ⊗ B

IdH⊗i // H ⊗ H

If B and H are flat as R-modules, both i⊗ IdB and IdH ⊗ i are injective, and hence so
is i⊗ i. In particular, this holds when R is a field, which will be our typical situation.

We finish the section with an example of computation of sub-Hopf algebras of a
group algebra over a field.

Theorem 1.2.12. Let K be a field and let G be a finite group. The K-sub-Hopf algebras of
K[G] are of the form K[H], with H a subgroup of G.

Proof. It is clear that any K-group algebra K[H] with H subgroup of G is a K-sub-
Hopf algebra of K[G].

Let B be a K-sub-Hopf algebra of K[G]. We must check that B is of the form K[H]
for some subgroup H of G. Since B is a K-sub-Hopf algebra of K[G], in particular,
B is a K-sub-vector space of K[G]. We know that G = {g1, · · · , gn} is a K-basis of
K[G]. Let m = dim(B) and let k = n−m. By basic linear algebra, we deduce that B
can be described by k equations

a11x1 + · · ·+ a1nxn = 0
· · ·
ak1x1 + · · ·+ aknxn = 0

with respect to the basis {gm+1, · · · , gn, g1, · · · , gm}. Let us consider the matrix

A =

a11 · · · a1n
· · · · · · · · ·
ak1 · · · akn

 .
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By Gauss method, A is congruent by rows to a matrix of the form 1 · · · 0 −λ
(1)
m+1 · · · −λ

(n)
m+1

· · · · · · · · · · · · · · · · · ·
0 · · · 1 −λ

(1)
n · · · −λ

(n)
n

 .

Then, B has a basis of the form
v1 = g1 + ∑n

i=m+1 λ
(1)
i gi

· · ·

vm = gm + ∑n
i=m+1 λ

(m)
i gi

.

Since B is K-sub-coalgebra, ∆B(vj) ∈ B⊗K S for all j ∈ {1, . . . , m}. Let us find the
coordinates of ∆B(vj) with respect to the basis {vi ⊗ vj}1≤i≤m,1≤j≤m of B⊗K S. We
have 

∆B(v1) = g1 ⊗ g1 + ∑n
i=m+1 λ

(1)
i gi ⊗ gi

. . .

∆B(vm) = gm ⊗ gm + ∑n
i=m+1 λ

(m)
i gi ⊗ gi

and then for 1 ≤ i, j ≤ m,

vi ⊗ vj = gi ⊗ gj +
n

∑
k=m+1

(λ
(j)
k gi ⊗ gk + λ

(i)
k gk ⊗ gj) +

n

∑
k,l=m+1

λ
(i)
k λ

(j)
l gk ⊗ gl.

Now, for each 1 ≤ i, j ≤ m, gi ⊗ gj only appears once in the expression of vi ⊗ vj.
If ∆C(vj) = ∑m

k,l=1 cklvk ⊗ vl, since the elements gk ⊗ gl are linearly independent in
K[G]⊗K[G], we deduce that ckl = 0 for all k, l ̸= j and cjj = 1. Thus, ∆(vj) = vj⊗ vj.
That is,

gi ⊗ gj +
n

∑
i=m+1

λ
j
i = gj ⊗ gj +

n

∑
k=m+1

λ
(j)
k (gk ⊗ gk + gk ⊗ gj) +

n

∑
k,l=m+1

λ
(j)
k λ

(j)
l gk ⊗ gl.

Since gj ⊗ gi does not appear in the leftside member and it does in the rightside

one with coefficient λ
(j)
i , λ

(j)
i = 0 for all i ∈ {m + 1, . . . , n}. Since j is arbitrary, we

deduce that vi = gi for all i ∈ {1, . . . , m}.
Let H = {g1, . . . , gm}. We have just checked that H is a K-basis of B, whence

B = K[H]. Since B is a K-subalgebra of K[G], H is a subgroup of G.

Remark 1.2.13. Theorem 1.2.12 will follow directly from a correspondence involving
Hopf algebras from the next chapter.

2.5 Sweedler’s notation

When doing computations in which R-coalgebras are involved, we will denote ele-
ments at the image of the comultiplication in an especial way so as to work with
them easily. This is the Sweedler notation. We shall work with Hopf algebras
just because it is our situation, but the following applies in the same way for R-
coalgebras. Let H be an R-Hopf algebra, and let h ∈ H. We write

∆H(h) = ∑
(h)

h(1) ⊗ h(2). (1.2)
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Note that h(1) and h(2) are just symbolic labels that do not refer to any particular
element of H. We know that an element of H ⊗ H is a sum of elements of the form
h1⊗ h2 for h1, h2 ∈ C, and this expression refers to any sum of elements of such form
that equals ∆H(h).

As an immediate application, the counit properties at Definition 1.2.1 3b translate
into

∑
(h)

εH(h(1))h(2) = h = ∑
(h)

h(1)εH(h(2)). (1.3)

On the other hand, the coassociative property gives

∑
(h)

h(1) ⊗ h(2)(1) ⊗ h(2)(2) = ∑
(h)

h(1)(1) ⊗ h(1)(2) ⊗ h(2).

We denote this element by

∆2(h) = ∑
(h)

h(1) ⊗ h(2) ⊗ h(3).

At the same time, we can apply to this element any of the three maps which is the
tensor product of twice IdH and ∆H, and by coassociativity, all of them will give the
same element, denoted

∆3(h) = ∑
(h)

h(1) ⊗ h(2) ⊗ h(3) ⊗ h(4).

Iterating this procedure, we write

∆n−1(h) = ∑
(h)

h(1) ⊗ · · · ⊗ h(n)

for the unique element obtained by iterating coassociativity n times.

2.6 Grouplike elements

On a Hopf algebra we have distinguished elements that can be seen in a certain way
as analogues of elements of groups, the so-called grouplike elements.

Definition 1.2.14. Let H be an R-Hopf algebra. We say that a non-zero element h ∈ H is
grouplike if ∆H(h) = h⊗ h.

Example 1.2.15. Let G be a finite group. By definition of the comultiplication ∆R[G]

of the R-group algebra R[G], the elements of G are grouplike elements of R[G].

Proposition 1.2.16. Let H be an R-Hopf algebra and suppose that the only idempotents of
R are 0 and 1. If h ∈ H is grouplike, then εH(h) = 1.

Proof. Since h is grouplike, we have that ∆H(h) = h ⊗ h, and (1.3) translates into
h = εH(h)h. Applying εH yields

εH(h) = εH(εH(h)h) = εH(h)εH(h),

that is, εH(h) is idempotent of R. Our hypothesis in R gives εH(h) ∈ {0, 1}, and
since h ̸= 0, necessarily εH(h) = 1.
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Remark 1.2.17. Some authors add the condition that εH(h) = 1 to the definition of
h being grouplike, and they label our grouplike elements as semi-grouplike. If R is a
field, the only idempotents of R are of course 0 and 1.

Write G(H) for the set of grouplike elements of an R-Hopf algebra H.

Theorem 1.2.18. If R has no zero divosors, G(H) is linearly independent over R.

Proof. This proof comes from [Und15, Proposition 1.2.18], where the result is proved
under the assumption that R is a field.

If G(H) = ∅, then G(H) is R-linearly independent. If G(H) contains just one
element, this element is necessarily non-zero, so G(H) is R-linearly independent.
Thus we can assume that G(H) contains at least two elements.

Let us suppose that G(H) is R-linearly dependent. Since |G(H)| ≥ 2, G(H)
contains some R-linearly independent subset. Let m be the largest integer such that
G(H) contains an R-linearly independent subset S = {hi}m

i=1 with cardinal m. Let
h ∈ G(H)− S. Then there are scalars ri ∈ R such that

h =
m

∑
i=1

rihi.

Applying the comultiplication, since hi ∈ G(H), we have

∆H(h) =
m

∑
i=1

rihi ⊗ hi.

But, since h ∈ G(H), we also get

∆H(h) = h⊗ h =
m

∑
i,j=1

rirjhi ⊗ hj.

Hence,
m

∑
i=1

rihi ⊗ hi =
m

∑
i,j=1

rirjhi ⊗ hj.

Since S is an R-linearly independent subset of H by definition, {hi ⊗ hj}m
i,j=1 is an

R-linearly independent subset of H ⊗ H. Therefore rirj = 0 whenever i ̸= j and
r2

i = ri for every 1 ≤ i ≤ m. Since h ̸= 0, there is some 1 ≤ i ≤ m is such that ri ̸= 0.
Since R has no zero divisors and ri(ri − 1) = 0, necessarily ri = 1. Moreover rj = 0
for any other j. We conclude that h = hi ∈ S, which contradicts our choice of h.

In Example 1.2.15 we saw that the elements of a group G are grouplike elements
of the R-group algebra R[G]. If R has no zero divisors, we can use Theorem 1.2.18
to prove that the elements of G are actually all the grouplike elements of R[G].

Corollary 1.2.19. Let G be a finite group. If R has no zero divisors, then G(R[G]) = G.

Proof. By Example 1.2.15, the elements of G belong to G(R[G]), so G ⊆ G(R[G]). But
by Theorem 1.2.18, |G(R[G])| ≤ rkR(R[G]) = |G|. Then the equality follows.

In particular, the grouplike elements of an R-group algebra form a group. This
is actually a general fact for grouplike elements of a Hopf algebra.
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Proposition 1.2.20 ([Chi00], (1.6)). G(H) is a group with the product of H.

Proof. First, since ∆H is an R-algebra homomorphism and the unit of H⊗H is 1⊗ 1,
∆H(1) = 1⊗ 1. Then 1 ∈ G(H), so G(H) is not empty.

Let h1, h2 ∈ G(H). Then,

∆H(h1 h2) = ∆H(mH(h1 ⊗ h2))

= mH⊗H(∆H(h1)⊗ ∆H(h2))

= mH⊗H((h1 ⊗ h1)⊗ (h2 ⊗ h2))

= (h1 h2)⊗ (h1 h2),

which proves that h1 h2 ∈ G(H).
Given h ∈ G(H),

h SH(h) = mH(h⊗ SH(h)) = mH(IdH ⊗ SH)(h⊗ h) =
= mH(IdH ⊗ SH)∆H(h)
= ϵH(h) 1H = 1H

,

and similarly, σH(h) h = 1H. So it is enough to prove that SH(h) ∈ G(H). We have
that h SH(h) = 1H, so

1H ⊗ 1H = ∆H(mH(IdH ⊗ SH)(h⊗ h))
= mH⊗H(∆H(h)⊗ ∆H(SH(h)))
= mH⊗H((h⊗ h)⊗ ∆H(SH(h))) = (h⊗ h)∆H(SH(h)).

By the uniqueness of the inverse in the algebra H ⊗ H, ∆H(SH(h)) = SH(h)⊗
SH(h), so SH(h) ∈ G(H) as we wanted.

From Corollary 1.2.19 it also follows that the grouplike elements of R-group al-
gebras R[G] with G finite form an R-basis. Under the assumption that R has no
zero divisors, they are the only finitely generated and free R-Hopf algebras with
this behaviour.

Corollary 1.2.21. Suppose that R has no zero divisors and let H be a finitely generated and
free R-Hopf algebra admitting an R-basis G formed by grouplike elements. Then G = G(H)
and H = R[G].

Proof. By hypothesis, G ⊆ G(H) and G is an R-basis of H. We know from Theorem
1.2.18 that G(H) is R-linearly independent, so necessarily G = G(H). In particular,
G is a group, so it makes sense to consider the R-group algebra R[G]. Since G is
an R-basis of H, we can regard H as the R-span of the elements of G. Moreover,
multiplication is closed for elements of N, so H = R[G] follows.

2.7 Duality

Recall that the dual of an R-module M, denoted M∗, is the set

HomR(M, R) = { f : M −→ R | f R-linear}.
Note that HomR(M, R) becomes also an R-module when it is endowed with point-
wise multiplication by R. Moreover, an R-linear map φ : M −→ M′ gives rise to a
map φ∗ : M′∗ −→ M∗ defined by φ∗(g)(m) = g(φ(m)), where m ∈ M and g ∈ M′∗.
Thus, we have a contravariant functor at the category of R-modules, which we call
the duality functor.
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2.7.1 Finite R-modules and projective coordinate sytems

If R is a field and M is a finite dimensional R-vector space, then it is well known
that for every R-basis {mi}n

i=1 of M there is an R-basis { fi}n
i=1 of M∗, called the

dual basis, such that fi(mj) = δij for every 1 ≤ i, j ≤ n, where δij is the Kronecker
delta. However, we want to keep a broader perspective, since it is often useful to
consider dual modules over rings. The analogue over rings to finite dimensional
vector spaces over fields are finitely generated and projective modules. We will
refer to such modules as finite. Namely:

Definition 1.2.22. Let M be an R-module.

1. We say that M is finitely generated if there is a finite subset {mi}n
i=1 ⊂ M such that

M = ∑n
i=1 Rmi.

2. We say that M is projective if it is a direct summand of a free R-module.

3. We say that M is finite if it is finitely generated and projective.

The analogy between finite dimensional vector spaces and finite modules lies in
the following result:

Proposition 1.2.23. An R-module M is finite if and only if there are n ∈ Z≥1 and elements
m1, . . . , mn ∈ M, f1, . . . , fn ∈ M∗ such that for each m ∈ M we have

m =
n

∑
i=1

fi(m)mi.

Definition 1.2.24. Let M be a finite R-module. A set {mi, fi}n
i=1 as in Proposition 1.2.23

is called a projective coordinate system for M.

When R is a field, finite R-modules are actually finite-dimensional R-vector spaces,
and the union of a basis together with its dual is a projective coordinate system.

Remark 1.2.25. Free modules of finite rank are finite, but the converse in general
does not hold. The existence of a projective coordinate system is coherent with this
fact, because the expression of m with respect to the elements mi may not be unique.

Remark 1.2.26. If {mi, fi}n
i=1 is a projective coordinate system for a finite R-module

M, we can also write elements of M∗ with respect to the fi. Indeed, given m ∈ M,
we know that m = ∑n

i=1 fi(m)mi. Applying f at both sides, we obtain f (m) =
∑n

i=1 f (mi) fi(m). Since m is arbitrary, this means that

f =
n

∑
i=1

f (mi) fi.

Proposition 1.2.27. If M is a finite R-module, then so is M∗. Moreover, there is a canonical
isomorphism M ∼= M∗∗ as R-modules.

Proof. Suppose that M is a finite R-module. Then M is a direct summand of a free
R-module of finite rank n, that is, there is an R-module N such that Rn = M ⊕ N.
Now, applying the duality functor, we have that Rn = M∗ ⊕ N∗, so M∗ is finitely
generated and projective.
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Let us define

η : M −→ M∗∗,
m −→ η(m) : M∗ → R, f 7→ f (m),

which is clearly a canonical morphism of R-modules. Let us prove that it is bijective.
Since M is finite, it admits a projective coordinate system {hi, fi}n

i=1. Let us consider
the map

µ : M∗∗ −→ M,
φ 7−→ ∑n

i=1 φ( fi)mi.

This is clearly R-linear. Now, for every φ ∈ M∗∗ and f ∈ M∗,

η ◦ µ(φ)( f ) = f (µ(φ)) = f
( n

∑
i=1

φ( fi)mi

)
= φ

( n

∑
i=1

f (mi) fi

)
= φ( f ),

the last equality due to Remark 1.2.26. On the other hand, given m ∈ M and f ∈ M∗,

µ ◦ η(m) =
n

∑
i=1

η(m)( fi)mi =
n

∑
i=1

fi(m)mi = m.

Remark 1.2.28. The isomorphism η being canonical means that its definition does
not depend on any choice; we can say that it is written the same for any finite R-
module M. In particular, if M is free of finite rank, the definition of η does not
depend on the choice of bases. In this case, we have that M is isomorphic as an
R-module with M∗, because they have the same rank. However, this isomorphism
is not canonical, in the sense that it depends on the choice of bases: if we change
bases, the definition of the isomorphism also changes.

After Proposition 1.2.27, we often identify H = H∗∗ by identifying any element
h ∈ H with its image η(h) ∈ H∗∗.

Corollary 1.2.29. Let M be a finite R-module. If {hi, fi}n
i=1 is a projective coordinate

system for M, then { fi, hi}n
i=1 is a projective coordinate system for M∗.

When we take m ∈ M and f ∈ M∗, f (m) stands for the map f evaluated at
the element m. But identifying m with its image in M∗∗, f (m) coincides with m( f ),
which means the map m : M∗ −→ M∗ evaluated at the element f ∈ M∗. In the
contexts where both expressions arise, we will unify these two points of view by
using the map

⟨·, ·⟩ : M∗ ⊗M −→ R, ⟨ f , h⟩ = f (h).

Under this convention,

m =
n

∑
i=1
⟨ fi, m⟩mi, m ∈ M,

f =
n

∑
i=1
⟨ f , mi⟩ fi, f ∈ M∗.

Let us study how the duality functor behaves with respect to the tensor product.
Namely, for two R-modules M and N, we are interested in the relation between
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M∗⊗ N∗ and (M⊗ N)∗. There is an important remark: if f ∈ M∗ and g ∈ N∗, f ⊗ g
can stand for the tensor product of f and g, which is an element of M∗ ⊗ N∗, or the
R-linear map M ⊗ N −→ R defined by m ⊗ n 7→ f (m)g(n), which is an element
of (M⊗ N)∗. However, both objects can be identified, as by the universal property
of the tensor product, given f and g there is a unique R-linear map as above (see
[Und15, Proposition 1.1.7]). Actually, we have been using implicitly this fact each
time we considered a tensor product of R-linear maps. Now, let Φ : M∗ ⊗ N∗ −→
(M ⊗ N)∗ be the map defined by Φ( f ⊗ g)(m⊗ n) = f (m)g(n) (and extended by
R-linearity), i.e, it carries the first interpretation of f ⊗ g to the second one.

Proposition 1.2.30. Let M and N be R-modules. Let Φ : M∗⊗N∗ −→ (M⊗N)∗ defined
by

Φ( f ⊗ g)(m⊗ n) = f (m)g(n), f ∈ M∗, g ∈ N∗, m ∈ M, n ∈ N

and extended by R-linearity.

1. If R has no zero divisors, Φ is injective.

2. If either M or N is finite as an R-module, then Φ is bijective.

Proof. 1. Let f ⊗ g ∈ Ker(Φ), so f (m)g(n) = 0 for all m ∈ M and all n ∈ N. If
f = 0, we have finished. Otherwise, if f ̸= 0, there is some m ∈ M such that
f (m) ̸= 0. Since R has no zero divisors, g(n) = 0 for all n ∈ N, so g = 0. Then
f = 0 or g = 0, proving that f ⊗ g = 0.

2. Suppose that M is finite as an R-module and pick a projective coordinate sys-
tem {mi, fi}n

i=1 for M. Let Ψ : (M⊗ N)∗ −→ M∗ ⊗ N∗ be the map defined by
Ψ(φ) = ∑n

i=1 fi ⊗ φ(mi ⊗−). It is straightforward to check the R-linearity of
Ψ. We prove that it is the inverse of Φ, from which it will follow the statement.
Given f ∈ M∗ and g ∈ N∗,

Ψ ◦Φ( f ⊗ g) =
n

∑
i=1

fi ⊗Φ( f ⊗ g)(mi ⊗−)

=
n

∑
i=1

fi ⊗ ⟨ f , mi⟩g

=
n

∑
i=1
⟨ f , mi⟩ fi ⊗ g

= f ⊗ g,

where the last equality follows from Remark 1.2.26. Conversely, given φ ∈
(M⊗ N)∗, m ∈ M and n ∈ N,

Φ ◦Ψ(φ)(m⊗ n) =
n

∑
i=1
⟨ fi, m⟩φ(mi ⊗ n)

= φ
( n

∑
i=1
⟨ fi, m⟩mi ⊗ n

)
= φ(m⊗ n).

Since m and n are arbitrary, it follows that Φ ◦Ψ(φ) = φ.
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In particular, Φ is bijective when R is a field and M, N are finite-dimensional
R-vector spaces.

2.7.2 Duals of Hopf algebras

Let us apply the notions related with duality to the context of Hopf algebras.
Looking at Definition 1.2.1, one can regard the notions of algebra and coalgebra

as duals: the diagram at 2a for the associative property is obtained from reversing
arrows at the diagram 3a for the coassociative property. The same phenomenon can
be observed with the diagrams 2b and 3b for the unit and counit properties respec-
tively. This intuition is materialized in the result that the dual of an R-coalgebra is
an R-algebra.

Proposition 1.2.31 ([Und15], Proposition 1.3.1). If C is an R-coalgebra, then C∗ is an
R-algebra with multiplication map mC∗ : C∗ ⊗ C∗ −→ C∗ defined by

mC∗( f ⊗ g) := ( f ⊗ g) ◦ ∆C, f , g ∈ C∗

and unit map uC∗ : R −→ C∗ given by

uC∗(r)(c) = rεC(c), r ∈ R, c ∈ C

Proof. Let us prove that mC∗ satisfies the associative property. For f , g, h ∈ C∗ and
c ∈ C, we have:

mC∗ ◦ (IdC∗ ⊗mC∗)( f ⊗ g⊗ h)(c) = mC∗( f ⊗ ∆C∗(g⊗ h))(c)
= ( f ⊗ ∆C∗(g⊗ h)) ◦ ∆C(c)

= ∑
(c)

f (c(1))⊗ ∆C∗(g⊗ h))(c(2))

= ∑
(c)

f (c(1))⊗ ((g⊗ h) ◦ ∆C(c(2)))

= ∑
(c)

f (c(1))⊗ g(c(2))⊗ h(c(3)).

Likewise,

mC∗ ◦ (mC∗ ⊗ IdC∗)( f ⊗ g⊗ h)(c) = mC∗(∆C∗( f ⊗ g)⊗ h)(c)
= (∆C∗( f ⊗ g)⊗ h) ◦ ∆C(c)

= ∑
(c)

∆C∗( f ⊗ g))(c(1))⊗ h(c(2))

= ∑
(c)
(( f ⊗ g) ◦ ∆C(c(1)))⊗ h(c(2))

= ∑
(c)

f (c(1))⊗ g(c(2))⊗ h(c(3)).

Since we have arrived in the same expression, the first members at each chain of
equalities coincide, which proves that the associative property holds.
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As for the unit property, given r ∈ R, f ∈ C∗ and c ∈ C, we have

mC∗ ◦ (IdC∗ ⊗ uC∗)( f ⊗ r)(c) = mC∗( f ⊗ uC∗(r))(c)
= ( f ⊗ uC∗(r)) ◦ ∆C(c)

= ∑
(c)

f (c(1))rεC(c(2))

= r ∑
(c)

f (c(1))εC(c(2))

= r ∑
(c)

f (εC(c(2))c(1))

= r f
(

∑
(c)

εC(c(2))c(1)
)

= r f (c).

In the same way, we prove that mC∗ ◦ (uC∗ ⊗ IdC∗)(r⊗ f )(c) = r f (c) for every r ∈ R,
f ∈ C∗ and c ∈ C. Hence the unit property is satisfied. This finishes the proof.

Remark 1.2.32. If we appy the duality functor at the counit map εC we obtain the
unit map uC∗ at Proposition 1.2.31. Indeed, ε∗C : R∗ −→ C∗ is defined by ε∗C( f )(c) =
f ◦ εC(c). Note that R∗ = EndR(R), whose only elements f ∈ R∗ are homoth-
eties with factor f (1R), and then R∗ identifies trivially with R by f 7→ f (1). Then
ε∗C : R −→ C∗ is defined by ε∗C(r)(c) = rεC(c) = uC∗(r)(c). Sine r and c are arbitrary,
ε∗C = uC∗ .

As for the relation between mC∗ and the dual ∆∗C of the comultiplication map
∆C, the matter is more subtle, as the map C∗ ⊗ C∗ −→ (C ⊗ C)∗ need not be injec-
tive (even though Proposition 1.2.31 is still valid in that case). However, following
Proposition 1.2.30, there is injectivity when R has no zero divisors or C is finite
as an R-module.In that case, applying the duality functor to the comultiplication
∆C : C −→ C⊗ C yields the map

∆∗C : (C⊗ C)∗ −→ C∗

defined as ∆∗C(φ) = φ ◦ ∆C, and we can consider the restriction ∆∗C |C∗⊗C∗ , which is
just the multiplication map mC∗ .

Remark 1.2.33. Let C be an R-coalgebra and consider the R-algebra structure on C∗

from Proposition 1.2.31. Then, the identity element for the multiplication on C∗ is
the counit map εC of C. Indeed, given f ∈ C∗ and c ∈ C, we have

mC∗( f ⊗ εC)(c) = ( f ⊗ εC)∆C(c)

= ∑
(c)

εC(c(2)) f (c(1))

= f
(

∑
(c)

εC(c(2))c(1)
)

= f (c),

so mC∗( f ⊗ εC) = f . Similarly, one proves that mC∗(εC ⊗ f ) = f .
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After Proposition 1.2.31, one may expect that if A is an R-algebra, then A∗ is an
R-coalgebra. However, this is not always the case (see [Und15, Example 1.3.2] for a
counterexample). Instead, we will that it holds when A is finite as an R-module (if
R is a field, this is just assuming that A is of finite dimension).

Let us think on what happens when one applies the duality functor to the mul-
tiplication map mA : A⊗ A −→ A. We obtain a map m∗A : A∗ −→ (A⊗ A)∗. Again
by Proposition 1.2.30, we have that (A ⊗ A)∗ ∼= A∗ ⊗ A∗ because A is finite, and
identifying both, we obtain a map m∗A : A∗ −→ A∗ ⊗ A∗. For f ∈ A∗, we can con-
sider m∗A( f ) as an element of (A ⊗ A)∗, and then, for a, b ∈ A, m∗A( f )(a ⊗ b) =
f (mA(a⊗ b)). Therefore, thanks to the hypothesis that A is finite as an R-module,
the image of m∗A lies in A∗ ⊗ A∗.

On the other hand, if one dualizes the unit map uA : R −→ A, we obtain a map
u∗A : A∗ −→ R∗ defined by uA∗( f )(r) = f (uA(r)). Identifying R∗ = R, we obtain
that u∗A : A∗ −→ R is defined by uA∗( f ) = f (1A).

In the following we shall see that the maps m∗A and u∗A serve as comultiplication
and counit maps for A∗, respectively.

Proposition 1.2.34 ([Und15], Proposition 1.3.9). If A is an R-algebra that is finite as an
R-module, then A∗ is an R-coalgebra with comultiplication map ∆A∗ : A∗ −→ A∗ ⊗ A∗

defined as
∆A∗( f )(a⊗ b) = f ◦mA(a⊗ b), a, b ∈ A,

and counit map εA∗ : A∗ −→ R given by

εA∗( f ) = f (1A).

Proof. Let us check the coassociative property. For f ∈ A∗ and a, b, c ∈ A, we claim
that

(IdA∗ ⊗ ∆A∗) ◦ ∆A∗( f ) = ∆A∗( f ) ◦ (IdA ⊗mA).

Indeed, let us write

∆A∗( f ) =
s

∑
i=1

αi ⊗ βi, αi, βi ∈ A∗

(note that we are not allowed to use Sweedler’s notation as long as we do not know
that ∆A∗ is a comultiplication). Then, given a, b, c ∈ A

(IdA∗ ⊗ ∆A∗) ◦ ∆A∗( f )(a⊗ b⊗ c) =
s

∑
i=1

αi ⊗ ∆A∗(βi)(a⊗ b⊗ c)

=
s

∑
i=1
⟨αi, a⟩βi ◦mA(b⊗ c)

=
s

∑
i=1

(αi ⊗ βi)(IdA ⊗mA)(a⊗ b⊗ c)

= ∆A∗( f ) ◦ (IdA ⊗mA)(a⊗ b⊗ c),

as claimed. Hence

(IdA∗ ⊗ ∆A∗) ◦ ∆A∗( f )(a⊗ b⊗ c) = ∆A∗( f ) ◦ (IdA ⊗mA)(a⊗ b⊗ c)
= f ◦mA ◦ (IdA ⊗mA)(a⊗ b⊗ c)
= f ◦mA(a⊗ (bc))
= a(bc).
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Likewise, it is proved that

(∆A∗ ⊗ IdA∗) ◦ ∆A∗( f )(a⊗ b⊗ c) = (ab)c.

Since A is an R-algebra, the associative property gives that (ab)c = a(bc), implying
coassociativity.

Finally, we check the counit property. Given f ∈ A∗, r ∈ R and a ∈ A, we have

(εA∗ ⊗ IdA∗) ◦ ∆A∗( f )(r⊗ a) = ∆A∗(uA ⊗ IdA)(r⊗ a)
= f ◦mA(uA ⊗ IdA)(r⊗ a)
= f (mA(r1A ⊗ a)
= f (ra)
= r f (a)
= (1⊗ f )(r⊗ a),

so (εA∗ ⊗ IdA∗)( f ) = 1⊗ f , and similarly, (IdA∗ ⊗ εA∗)( f ) = f ⊗ 1.

In the end, we see that the category of R-Hopf algebras is invariant under the
duality functor.

Proposition 1.2.35. Let H be a finite R-Hopf algebra. Then H∗ is an R-Hopf algebra.

Proof. We follow the proof at [Und15, Proposition 3.1.12].
By Proposition 1.2.31, H∗ is an R-algebra with multiplication mH∗ := ∆∗H |H∗⊗H∗

and unit uH∗ := ε∗H. On the other hand, since H is finite as an R-module, Proposition
1.2.34 gives that H∗ is an R-coalgebra with comultiplication ∆H∗( f ) = f ◦ mH and
counit εH∗( f ) = f (1H). Now, it is straightforward to check that ∆H∗ and εH∗ are
ring homomorphisms, proving that H∗ is an R-bialgebra. Let us consider the dual
S∗H : H∗ −→ H∗ of the antipode SH : H −→ H. Given f ∈ H∗ and a ∈ H, we have

(mH∗ ◦ (IdH∗ ⊗ S∗H) ◦ ∆H∗( f ))(a) = (IdH∗ ⊗ S∗H)(∆H∗( f )(∆H(a)))
= ∆H∗( f )((IdH ⊗ SH) ◦ ∆H(a))
= f (mH ◦ (IdH ⊗ SH) ◦ ∆H(a))
= f (εH(a)1H)

= εH(a) f (1H)

= εH∗( f )εH(a)
= εH∗( f )1H∗(a).

Likewise,
(mH∗ ◦ (S∗H ⊗ IdH∗) ◦ ∆H∗( f ))(a) = εH∗( f )1H∗(a).

Then SH∗ := S∗H works as an antipode and H∗ is an R-Hopf algebra.

Proposition 1.2.36. Let H be an R-Hopf algebra which is finite as an R-module. Then H∗∗

is an R-Hopf algebra and H ∼= H∗∗ as R-Hopf algebras.

Proof. That H∗∗ is an R-Hopf algebra follows directly from Proposition 1.2.35. On
the other hand, from the proof of Proposition 1.2.27, we know that there is an iso-
morphism η : H −→ H∗∗ of R-modules defined by η(h)( f ) = f (h). It is enough to
check that this is an isomorphism of R-Hopf algebras.
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• Given h, h′ ∈ H and f ∈ H∗,

(mH∗∗(η ⊗ η)(h⊗ h′))( f ) = (η(h)⊗ η(h′))∆H∗( f )

= (η(h)⊗ η(h′))
(

∑
( f )

f(1) ⊗ f(2)
)

= ∑
( f )

η(h)( f(1))η(h
′)( f(2))

= ∑
( f )

f(1)(h) f(2)(h
′)

= ∑
( f )

f(1) ⊗ f(2)(h⊗ h′)

= ∆H∗( f )(h⊗ h′)
= f ◦mH(h⊗ h′)
= f (mH(h⊗ h′))
= η(mH(h⊗ h′))( f ).

Then mH∗∗ ◦ (η ⊗ η)(h⊗ h′) = η ◦mH(h⊗ h′) for every h⊗ h′, whence mH∗∗ ◦
(η ⊗ η) = η ◦mH.

• Given r ∈ R and f ∈ H∗,

η ◦ uH(r)( f ) = rη(1H)( f )
= r f (1H)

= rεH∗( f )
= uH∗∗(r)( f ).

Then η ◦ uH = uH∗∗ .

• Note that since H∗∗ ⊂ (H∗ ⊗ H∗)∗, elements of H∗∗ can be seen as R-linear
maps H∗ ⊗ H∗ −→ R. Now, given h ∈ H and f , g ∈ H∗,

(∆H∗∗ ◦ η(h))( f ⊗ g) = η(h) ◦mH∗( f ⊗ g)
= η(h)(( f ⊗ g) ◦ ∆H)

= ( f ⊗ g)∆H(h)

= ∑
(h)

f (h(1))⊗ g(h(2))

= ∑
(h)

η(h(1))( f )⊗ η(h(2))(g)

= (η ⊗ η)∆H(h)( f ⊗ g).

It follows that ∆H∗∗ ◦ η = (η ⊗ η)∆H.

• Given h ∈ H,

εH∗∗ ◦ η(h) = η(h)(1H∗) = 1H∗(h) = εH(h).

Then, εH∗∗ ◦ η = εH.
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• Given h ∈ H and f ∈ H∗,

SH∗∗ ◦ η(h) = η(h) ◦ SH∗( f ) = SH∗( f )(h) = f ◦ SH(h) = η ◦ SH(h)( f ).

Then SH∗∗ ◦ η = SH.

Corollary 1.2.37. Let H be a finite R-module. Then H is an R-Hopf algebra if and only if
so is H∗.
Proof. The left-to-right implication is Proposition 1.2.35. Conversely, assume that
H∗ is an R-Hopf algebra. Again by Proposition 1.2.35, we have that H∗∗ is an R-
Hopf algebra. Now, we induce on H an R-Hopf algebra structure by means of the
isomorphism of R-modules η : H −→ H∗∗. Namely, we define on H the following
operations:

• Multiplication map: mH := η−1 ◦mH∗∗ ◦ (η ⊗ η).

• Unit map: uH := η−1 ◦ ηH∗∗ .

• Comultiplication map: ∆H := (η−1 ⊗ η−1) ◦ ∆H∗∗ ◦ η.

• Counit map: εH := εH∗∗ ◦ η.

• Coinverse map: SH := η−1 ◦ SH∗∗ ◦ η.

Since the previous definitions are equivalent to the axioms for a Hopf algebra
homomorphism (see Definition 1.2.9), it is automatic that H is an R-Hopf algebra
with these operations. But by Proposition 1.2.36, this Hopf algebra structure on H is
the one such that its bidual is the one at H∗∗, and hence its dual is the one at H∗.

2.8 Modules and comodules

Let us fix an R-Hopf algebra H. Suppose that we have an R-module A which in
addition is an H-module. This means that we have an external product of H on A,
or equivalently, an action H × A −→ A, that preserves the additive structure of S.
If in addition we want H to act R-linearly on A, that is, the action is preserved by
external multiplication by R, we should impose that the map above is R-bilinear.
Equivalently, we can think of it as an R-linear map H ⊗ A −→ A, which will be our
usual way to consider R-linear actions.

We need to consider R-linear actions of R-Hopf algebras that are in addition well
behaved with respect to the Hopf algebra operations. This leads to the notion of left
H-module.

Definition 1.2.38. Let A be an R-module and let H be an R-Hopf algebra. We say that A
is a left H-module if there is an R-linear map α : H ⊗ A −→ A such that:

1. (Associative property) α ◦ (IdH ⊗ α) = α ◦ (mH ⊗ IdA), that is, the following
diagram is commutative:

H ⊗ H ⊗ A

IdH⊗α

��

mH⊗IdA // H ⊗ A

α

��
H ⊗ A α // H
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2. (Unit property) α ◦ (uH ⊗ IdA)(r⊗ a) = ra for every r ∈ R and a ∈ A, that is, the
following diagram is commutative:

R⊗ A

uH⊗IdA

��

s

!!
H ⊗ A α // A

where s : R⊗ A −→ A is the R-linear action of R on A induced by uA.

We will also say that A is a left H-module via α.

Remark 1.2.39. The notion of left H-module at Definition 1.2.38 is not the usual
notion of left module over a ring, that is, an abelian group receiving the external
product of a ring of scalars that preserves addition. The mere existence of an R-
linear map α : H ⊗ A −→ A yields that A is a left module over the underlying ring
structure of H in that sense. Instead, our ground ring is required to be an R-Hopf
algebra and we impose that the associative and unit properties at Definition 1.2.38
are satisfied. In fact, there is no need of the coalgebra structure and the antipode, so
we can actually define the notion of left S-module, for an R-algebra S, in the same
way.

If A is a left H-module, we usually refer to α : H⊗ A −→ A as an R-linear action
or module map. We may use the label αA for the action of A when other left H-
modules are present in the context. Given h ∈ H and a ∈ A, we will usually denote
h · a := α(h⊗ a). Under this notation, the associative property means that

(hh′) · a = h · (h′ · a), h, h′ ∈ H, a ∈ A,

while the unit property translates into

(r1H) · a = ra, r ∈ R, a ∈ A.

Example 1.2.40. 1. The ground ring R has itself left H-module structure by means
of

h · r = εH(h)r, h ∈ H, r ∈ R.

2. Let A be a left H-module. Then, A⊗ A is also a left H-module with respect to

h · (a⊗ b) := ∑
(h)

(h(1) · a)⊗ (h(2) · b), h ∈ H, a, b ∈ A.

3. An R-Hopf algebra H is a left H-module with the multiplication mH as R-linear
action.

Definition 1.2.41. Let H be an R-Hopf algebra and let A and A′ be left H-modules. We
say that an R-module homomorphism f : A −→ A′ is a left H-module homomorphism if
f ◦ αA = αA′ ◦ (IdH ⊗ f ), that is, the following diagram commutes:

A
f

// A′

H ⊗ A

αA

OO

IdH⊗ f
// H ⊗ A′

αA′

OO
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While in the notion of left H-module we have an action consisting on an R-linear
map α : H ⊗ A −→ A compatible with the Hopf algebra operations, we can dualize
this notion to the one of right H-comodule.

Definition 1.2.42. Let A be an R-module. We say that A is a right H-comodule if there
is an R-module homomorphism β : A −→ A⊗ H such that:

1. (Coassociative property) (β⊗ IdH) ◦ β = (IdA ⊗ ∆H) ◦ β, that is, the following
diagram is commutative:

A⊗ H ⊗ H A⊗ H
β⊗IdHoo

A⊗ H

IdA⊗∆H

OO

A
β

oo

β

OO

2. (Counit property) (IdA ⊗ εH) ◦ β is the trivial R-linear map ι : A −→ A⊗ R, that
is, the following diagram is commutative:

A⊗ H

IdA⊗εH

��

A
β

oo

ι

}}
A⊗ R

We will also say that A is a right H-comodule via β.

Remark 1.2.43. As in the case of left H-modules, for the notion of right H-comodule,
the requirement of H to be an R-Hopf algebra is not needed, so that right C-comodules
are defined in the same way for an R-coalgebra C.

We will usually call the map β : A −→ A⊗ H an R-linear coaction or comodule
map. We have also a Sweedler notation for this map. Namely, if a ∈ A, we will write

β(a) = ∑
(a)

a(0) ⊗ a(1), a(0) ∈ A, a(1) ∈ H. (1.4)

Again, when we are working also with other right H-comodules, we may denote
βA for the comodule map of A.

Example 1.2.44. 1. The ring R can be seen as a right H-comodule with coaction

βR(r) = r⊗ uH(1R), r ∈ R.

2. If A is a right H-comodule, then so is A⊗ A with coaction

βA⊗A(a⊗ b) = ∑
(a),(b)

a(0) ⊗ b(0) ⊗mH(a(1) ⊗ b(1)), a, b ∈ A.
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3. An R-Hopf algebra H is a right H-comodule with the comultiplication ∆H as coaction.

Definition 1.2.45. Let A and A′ be right H-comodules. We say that an R-linear map
f : A −→ A′ is a right H-comodule homomorphism if βA′ ◦ f = ( f ⊗ IdH) ◦ βA, that is,
the following diagram commutes:

A

βA

��

f
// A′

βA′

��
H ⊗ A

IdH⊗ f
// H ⊗ A′

Now, suppose that the R-Hopf algebra H is finite. Recall that the dual H∗ is also
an R-Hopf algebra which is finite as an R-module (in short, we will refer to H as a
finite R-Hopf algebra). If we fix a projective coordinate system for H, we can induce
a right H∗-comodule structure from a left H-module structure and viceversa, and
both operations are inverse to each other.

Proposition 1.2.46. Let H be a finite R-Hopf algebra and let {hi, fi}n
i=1 be a projective

coordinate system for H.

1. If A is a right H-comodule, then it is a left H∗-module with action H∗ ⊗ A −→ A
defined by

f · a := ∑
(a)

a(0) ⟨ f , a(1)⟩, f ∈ H∗, a ∈ A.

2. If A is a left H-module, then it is a right H∗-comodule with coaction given by the map

β : A −→ A⊗ H∗,
a 7−→ ∑n

i=1(hi · a)⊗ fi.

Proof. 1. We prove the validity of the conditions 1 and 2 at Definition 1.2.38.

We first check 1. The coassociative property for β means that

∑
(a)

β(a(0))⊗ a(1) = ∑
(a)

a(0) ⊗ ∆H(a(1)), a(0) ∈ A, a(1) ∈ H.

Writing down the Sweedler notation for β(a(0)), we have

∑
(a)

a(0) ⊗ a(1) ⊗ a(2) = ∑
(a)

a(0) ⊗ ∆H(a(1)).
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Given f , f ′ ∈ H∗ and a ∈ A, we obtain

( f f ′) · a = ∑
(a)

a(0)⟨ f f ′, a(1)⟩

= ∑
(a)

a(0)mH∗( f ⊗ f ′)(a(1))

= ∑
(a)

a(0)( f ⊗ f ′) ◦ ∆H(a(1))

= ∑
(a)

a(0)⟨ f , a(1)⟩⟨ f ′, a(2)⟩

= f ·
(

∑
(a)

a(0)⟨ f ′, a(1)⟩
)

= f · ( f ′ · a),

as we wanted.

Next, we check 2. For r ∈ R and a ∈ A, we have

(r1H∗) · a = ∑
(a)

a(0)⟨r1H∗ , a(1)⟩ = r ∑
(a)

a(0)εH(a(1)) = a.

2. We shall check that the conditions 1 and 2 at Definition 1.2.42 are satisfied.

Given a ∈ A, we have that

(β⊗ IdH∗) ◦ β(a) = (β⊗ 1)

(
n

∑
i=1

(hi · a)⊗ fi

)
=

n

∑
i,j=1

(hj · (hi · a))⊗ f j ⊗ fi,

(IdA⊗∆H∗) ◦ β(a) = (1⊗∆H∗)

(
n

∑
i=1

(hi · a)⊗ fi

)
=

n

∑
i=1

(hi · a)⊗

∑
( fi)

fi(1) ⊗ fi(2)

 .

Next, we evaluate at an element h⊗ h′ ∈ H ⊗ H, obtaining that

(β⊗ IdH∗) ◦ β(a)(h⊗ h′) =
n

∑
i,j=1

(hj · (hi · a)) ⟨ f j ⊗ fi, h⊗ h′⟩

=
n

∑
i,j=1

(hj · (hi · a)) ⟨ f j, h⟩ ⟨ fi, h′⟩

=
n

∑
j=1
⟨ f j, h′⟩ hj ·

(
n

∑
i=1
⟨ fi, h′⟩ (hi · a)

)
= h · (h′ · a),
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(IdA ⊗ ∆H∗) ◦ β(a)(h⊗ h′) =
n

∑
i=1

(hi · a)

∑
( fi)

⟨ fi(1) ⊗ fi(2), h⊗ h′⟩


=

n

∑
i=1

(hi · a)

∑
( fi)

⟨ fi(1), h⟩ ⟨ fi(2), h′⟩


=

n

∑
i=1

(hi · a)∆H∗( fi)(h⊗ h′)

=
n

∑
i=1

(hi · a) ⟨ fi, h h′⟩

= (h h′) · a.

Since A is a left H-module, we have that h · (h′ · a) = (h h′) · a, so we conclude
that (β⊗ IdH∗) ◦ β = (IdA ⊗ ∆H∗) ◦ β.

Finally, for a ∈ A we have

(IdA ⊗ εH∗) ◦ β(a) =
n

∑
i=1

hi · a⊗ εH∗( fi)

=
n

∑
i=1

hi · a⊗ fi(1H)

=
( n

∑
i=1

fi(1H)hi

)
· a⊗ 1R

= (1H · a)⊗ 1R

= a⊗ 1R

(1.5)

We check that the notions left H-module and right H-comodule are dual to each
other, in the sense that left H-module is equivalent to right H∗-comodule.

Proposition 1.2.47. Let H be a finite R-Hopf algebra and let A be an R-module. Then, A
is a left H-module if and only if it is a right H∗-comodule. Furthermore, if it is the case, the
H-module and H∗-comodule structures on A are induced as in Proposition 1.2.46 by each
other.

Proof. The equivalence has been proved already. Let us consider the left H-module
structure H ⊗ A −→ A on A. Then, the induced right H∗-comodule structure is
given by

β(a) =
n

∑
i=1

(hi · a)⊗ fi, a ∈ A.

This coaction induces a left H-module structure given by

h(a) = ∑
(a)

a(0)⟨h, a(1)⟩.

By the definition of β,

h(a) =
n

∑
i=1

(hi · a)⟨h, fi⟩ =
(

n

∑
i=1
⟨ fi, h⟩ hi

)
· a = h · a
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for every a ∈ A, so we recover the original left H-module structure on A.
Now, we consider the right H∗-comodule structure β : A −→ A⊗ H∗ on A. The

induced left H-module structure is given by

h(a) = ∑
(a)

a(0)⟨h, a(1)⟩.

This action induces a right H∗-comodule structure given by

β′(a) =
n

∑
i=1

hi(a)⊗ fi

=
n

∑
i=1

∑
(a)

a(0)⟨hi, a(1)⟩

⊗ fi

= ∑
(a)

a(0)

(
n

∑
i=1
⟨a(1), hi⟩ ⊗ fi

)
= ∑

(a)
a(0) ⊗ a(1)

= β(a),

which is just the original right H∗-comodule structure.

2.9 Module and comodule algebras

In Section 2.8, A has been assumed to be an R-module with either module or comod-
ule structures over an R-Hopf algebra H, but no assumption on the inner structure
of A has been imposed. Now, let us suppose that A is in addition an R-algebra,
so that it is endowed with multiplication and unit maps satisfying the associative
and unit properties. If A is a left H-module (resp. right H-comodule), it admits an
R-linear action (resp. coaction) which is well behaved with respect to the algebra
(resp. coalgebra) operations of H. The notions of left module algebra and right co-
module algebra arise when some compatibility conditions are imposed between the
Hopf algebra operations and the multiplication and unit maps of A.

Definition 1.2.48. Let A be an R-algebra. We say that A is a left H-module algebra if it is
a left H-module and the following conditions are satisfied:

1. Given h ∈ H and a, b ∈ A,

h · (ab) = ∑
(h)

(h(1) · a)(h(2) · b).

2. For every h ∈ H,
h · 1A = εH(h)1A.

There is an equivalent definition in terms of the multiplication and the unit maps
of the R-algebra A.
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Proposition 1.2.49. Let H be an R-Hopf algebra and let A be an R-algebra which is also
a left H-module with action denoted by ·. Then, A is a left H-module algebra if and only if
mA : A⊗ A −→ A and uA : R −→ A are left H-module homomorphisms.

Proof. First, we check that mA is a left H-module homomorphism if and only if the
condition 1 at Definition 1.2.48 holds. Let h ∈ H, a, b ∈ A and note that

mA(h · (a⊗ b)) = mA(∑
(h)

(h(1) · a)⊗ (h(2) · b)) = ∑
(h)

(h(1) · a) (h(2) · b),

h ·mA(a⊗ a′) = h · (ab).

Thus, h · (ab) = ∑(h)(h(1) · a) (h(2) · b) if and only if mA(h(a⊗ b)) = h · mA(a⊗ b)
and we are done.

It remains to check that the uA is a left H-module homomorphism if and only if
the condition 2 at Definition 1.2.48 is satisfied. Assume that uA is a left H-module
homomorphism. Given h ∈ H,

h · 1A = h · uA(1R) = uA(h · 1R) = uA(ϵH(h) 1R) = ϵH(h) 1A.

Conversely, if 2 is satisfied, given h ∈ H and r ∈ R,

uA(h · r) = uA(εH(h)r) = εH(h) uA(r) = (h · 1A) uA(r) = h · uA(r).

Based on the equivalent definition of the left H-module algebra notion at Propo-
sition 1.2.49, we establish the one of right H-comodule algebra.

Definition 1.2.50. Let H be an R-Hopf algebra and let A be an R-algebra. We say that A
is a right H-comodule algebra if it admits right H-comodule structure and the maps mA,
uA are right H-comodule homomorphisms.

As in the module algebra case, there is an equivalent definition.

Proposition 1.2.51. Let H be an R-Hopf algebra and let A be an R-algebra. Then, A is a
right H-comodule algebra if and only if the coaction β is a homomorphism of R-algebras.

Proof. Given a, b ∈ A, we have that β ◦mA(a⊗ b) = β(a b) and

(mA ⊗ IdH) ◦ βA⊗A(a⊗ b) = (mA ⊗ IdH)

 ∑
(a),(b)

a(0) ⊗ b(0) ⊗ (a(1) b(1))


= ∑

(a),(b)
a(0) b(0) ⊗ a(1) b(1)

=

∑
(a)

a(0) ⊗ a(1)

 ∑
(b)

b(0) ⊗ b(1)


= β(a) β(b),

so mA is an homomorphism of right H-comodules if and only if β(a b) = β(a) β(b)
for every a, b ∈ A.
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On the other hand, we have that β ◦ uA(r) = β(r 1A) = r β(1A) and

(uA ⊗ IdH) ◦ βR(r) = (uA ⊗ IdH)(r⊗ uH(1R)) = uA(r)⊗ 1H = r 1A ⊗ 1H.

Thus, uA is an homomorphism of H-comodules if and only if β(1A) = 1A ⊗ 1H.
Then, A is a H-comodule algebra if and only if β(a b) = β(a) β(b) for every

a, b ∈ A and β(1A) = 1A ⊗ 1H, that is, β is a homomorphism of R-algebras.

We can complete Proposition 1.2.47 to the following.

Proposition 1.2.52. Let H be a finite R-Hopf algebra and let A be an R-algebra. Then A is
a left H-module algebra if and only if it is a right H∗-comodule algebra.

Proof. Assume that A is a right H∗-comodule algebra with coaction β : A −→ A⊗
H∗. Consider the left H-module structure on A as in Proposition 1.2.46, that is,

h · a := ∑
(a)

a(0) ⟨h, a(1)⟩, h ∈ H, a ∈ A.

By Proposition 1.2.51, β is a homomorphism of R-algebras. This means that for
every a, b ∈ A,

β(ab) = ∑
(a,b)

a(0)b(0) ⊗ a(1)b(1).

Now, given f ∈ H∗ and a, b ∈ A, we have

h · (ab) = ∑
(a,b)

a(0)b(0)⟨h, a(1)b(1)⟩

= ∑
(a,b)

a(0)b(0) ∑
( f )
⟨h(1), a(1)⟩⟨h(2), b(1)⟩

= ∑
(h)

∑
(a,b)

a(0)⟨h(1), a(1)⟩b(0)⟨h(2), b(1)⟩

= ∑
(h)

(
∑
(a)

a(0)⟨h(1), a(1)⟩
)(

∑
(b)

b(0)⟨h(2), b(1)⟩
)

= ∑
(h)

(h · a)(h · b).

On the other hand, since β(1A) = 1A ⊗ 1H∗ , for every h ∈ H we have

h · 1A = ⟨h, 1H∗⟩1A = εH(h)1A.

Suppose that A is a left H-module algebra. By Proposition 1.2.46, we have that
mA and uA are left H-module homomorphisms. We know from Proposition 1.2.47
that A is a right H∗-comodule with coaction

β(a) =
n

∑
i=1

(hi · a)⊗ fi.

Let us check that A is a right H∗-comodule algebra. By Proposition 1.2.51, it is
enough to check that β is a homomorphism of R-algebras. First, let us define a map

Φ : A⊗ H∗ −→ HomR(H, A),
a⊗ f −→ h 7→ a⟨ f , h⟩.

40



This is clearly an R-linear map, and it is bijective because it has inverse

Ψ : HomR(H, A) −→ A⊗ H∗,
φ 7−→ ∑n

i=1 φ(hi)⊗ fi.

Indeed, given a⊗ f ∈ A⊗ H∗, we have

Ψ ◦Φ(a⊗ f ) =
n

∑
i=1

Φ(a⊗ f )(hi)⊗ fi

=
n

∑
i=1

a⟨ f , hi⟩ ⊗ fi

= a⊗
( n

∑
i=1
⟨ f , hi⟩ fi

)
= a⊗ f ,

and conversely, for any φ ∈ HomR(H, A) and h ∈ H,

Φ ◦Ψ(φ)(h) = Φ
( n

∑
i=1

φ(hi)⊗ fi

)
(h)

=
n

∑
i=1

φ(hi)⟨ fi, h⟩

= φ
( n

∑
i=1
⟨ fi, h⟩hi

)
= φ(h).

Since h is arbitrary, we conclude that Φ ◦Ψ(φ) = φ.
Let us check that β is a homomorphism of R-algebras. Given a, b ∈ A, we shall

prove that Φ(β(ab)) = Φ(β(a)β(b)). From the bijectivity of Φ, it will follow that
β(ab) = β(a)β(b).

First, we have

β(ab) =
n

∑
i=1

hi · (ab)⊗ fi.

Thus, given h ∈ H,

Φ(β(ab))(h) =
n

∑
i=1

hi · (ab)⟨ fi, h⟩.

Since ⟨ fi, h⟩ ∈ R,

n

∑
i=1

hi · (ab)⟨ fi, h⟩ =
( n

∑
i=1
⟨ fi, h⟩hi

)
· (ab) = h · (ab).

From this, we have that

h · (ab) = ∑
(h)

(h(1) · a)(h(2) · b)
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because A is a left H-module algebra. Now, writing elements of h with respect to
{hi, fi}n

i=1, we obtain

∑
(h)

(h(1) · a)(h(2) · b) = ∑
(h)

( n

∑
i=1
⟨ fi, h(1)⟩hi

)
· a
( n

∑
j=1
⟨ f j, h(2)⟩hj

)
· b.

Again, since the expressions in brackets belong to R, we have

∑
(h)

( n

∑
i=1
⟨ fi, h(1)⟩hi

)
· a
( n

∑
j=1
⟨ f j, h(2)⟩hj

)
· b = ∑

(h)

( n

∑
i=1

(hi · a)⟨ fi, h(1)⟩
)( n

∑
j=1

(hj · b)⟨ f j, h(2)⟩
)

= ∑
(h)

n

∑
i,j=1

(hi · a)(hj · b)⟨ fi, h(1)⟩⟨ f j, h(2)⟩

=
n

∑
i,j=1

(hi · a)(hj · b)∑
(h)
⟨ fi, h(1)⟩⟨ f j, h(2)⟩

Note that

∑
(h)
⟨ fi, h(1)⟩⟨ f j, h(2)⟩ = ( fi ⊗ f j)

(
∑
(h)

h(1) ⊗ h(2)
)

= ( fi ⊗ f j)∆H(h)

= mH∗( fi ⊗ f j)(h)

= ⟨ fi f j, h⟩.

Therefore,

n

∑
i,j=1

(hi · a)(hj · b)∑
(h)
⟨ fi, h(1)⟩⟨ f j, h(2)⟩ =

n

∑
i,j=1

(hi · a)(hj · b)⟨ fi f j, h⟩.

Since

β(a)β(b) =
n

∑
i,j=1

(hi · a)(hj · b)⊗ fi f j,

we see that
n

∑
i,j=1

(hi · a)(hj · b)⟨ fi f j, h⟩ = Φ(β(a)β(b))(h).

Going through the chain of equalities, we conclude that

Φ(β(ab))(h) = Φ(β(a)β(b))(h),

for every h ∈ H, from which the desired equality follows.

3 Exercises

3.1 Exercises on Section 1

1. Let K be a field with char(K) = 0. Let L and M be finite extensions of K and
M/K is Galois.
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(a) Prove that LM/L is Galois and that there is an embedding Gal(LM/L) ↪→
Gal(M/K), which becomes an isomorphism if L ∩M = K.

(b) Suppose that L/K is also Galois. Show that LM/K is Galois and that there
is an embedding Gal(LM/K) ↪→ Gal(L/K)×Gal(M/K), which becomes
an isomorphism if L ∩M = K.

2. Let L be the splitting field of the polynomial f (x) = x4 + 6x2 − 3 over Q.
Determine completely the lattice of intermediate fields of L/Q and the lattice
of subgroups of Gal(L/Q).

Note: L is also the splitting field of the polynomial x4 − 3x2 + 3 over Q.

3. Let L/K be a Galois extension with group G.

(a) Show that G endowed with the Krull topology is a topological group.

(b) Prove that the Krull topology on G is discrete if and only if L/K is finite.
Deduce that the fundamental theorem of Galois theory at the infinite case
is a generalization of the one for the finite case.

4. For each m ∈ Z>0, write Lm for the m-th cyclotomic field; that is, Lm := Q(ζm),
where ζm is a primitive m-th root of unity. In addition, for a prime number p,
let Lp∞ =

⋃
n∈Z>0

Lpn be the union of all the fields Lpn (which is a field because
Lpn ⊂ Lpn+1 for all n ∈ Z>0).

(a) Prove that Lm/Q is Galois and that Gal(Lm/Q) ∼= (Z/mZ)×.
Note: You do not need to prove the result that all the conjugates of ζm are
ζk

m for 1 ≤ k ≤ m and gcd(k, m) = 1.

(b) Show that for each intermediate field E of Lp∞ /Q such that E/Q is finite,
there is some n ∈ Z>0 such that E ⊆ Lpn . Deduce that if in addition E/Q

is Galois, then it is abelian.

(c) Prove that Lp∞ /Q is Galois and that Gal(Lp∞ /Q) ∼= (Zp)×, the multi-
plicative group of the ring of p-adic integers.
Note: You are allowed to use the definition of Zp as a projective limit.

3.2 Exercises on Section 2

1. Let G be a group. Prove that the R-group algebra R[G] is an R-Hopf algebra.

2. Let H and H′ be R-Hopf algebras. Prove that H ⊗ H′ is an R-Hopf algebra
with the following operations:

• Multiplication map: mH⊗H′ : (H⊗H′)⊗ (H⊗H′) −→ H⊗H′, mH⊗H′((a⊗
b)⊗ (c⊗ d)) = mH(a⊗ c)⊗mH′(b⊗ d).

• Unit map: uH⊗H′ : R −→ H ⊗ H′, uH⊗H′(r) = r1H ⊗ 1H′ .

• Comultiplication map: ∆H⊗H′ = (IdH ⊗ τ ⊗ IdH′) ◦ (∆H ⊗ ∆H′) : H ⊗
H′ −→ (H⊗ H′)⊗ (H⊗ H′), where τ : H⊗ H′ −→ H′ ⊗ H is defined by
τ(a⊗ b) = b⊗ a.

• Counit map: εH⊗H′ : H ⊗ H′ −→ R, εH⊗H′(a⊗ b) = εH(a)εH′(b).
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• Coinverse map: SH⊗H′ : H ⊗ H′ −→ H ⊗ H′, SH⊗H′(a ⊗ b) = SH(a) ⊗
SH′(b).

3. Let G and H be finite groups. Prove that R[G × H] and R[G]⊗ R[H] are iso-
morphic as R-Hopf algebras.

4. Let A be an R-algebra and let C be an R-coalgebra. Given f , g ∈ HomR(C, A),
the convolution of f and g is defined as

f ∗ g := mA ◦ ( f ⊗ g) ◦ ∆C.

Prove that (HomR(C, A), ∗) is a monoid (that is, it is associative and admits an
identity element).

Hint: It may help write down the definition of f ∗ g in terms of the Sweedler
notation for the comultiplication.

5. Let H be an R-Hopf algebra. Prove that the antipode SH is an anti-homomorphism
of R-algebras, that is, SH(ab) = SH(b)SH(a) for all a, b ∈ H and SH(1H) = 1H.

Hint: Use the uniqueness of the inverse of mH, regarded as an element of the
monoid HomR(H ⊗ H, H) with the convolution.

6. Let H and H′ be R-Hopf algebras, and let f : H −→ H′ be a homomorphism
of R-bialgebras. Prove that f is a homomorphism of R-Hopf algebras.

Hint: Use the uniqueness of the inverse of f , regarded as an element of the
monoid HomR(H, H′) with the convolution.

7. Let f : H −→ H′ be a homomorphism of R-Hopf algebras.

(a) Prove that f (G(H)) ⊆ G(H′).
(b) Show that | f (G(H))| divides gcd(|G(H)|, |G(H′)|).

8. Let H be a finite R-Hopf algebra.

(a) Show that H is a left H-module with the multiplication mH : H⊗H −→ H
as action. Write down the induced right H∗-comodule structure for H.

(b) Show that H∗ is a right H∗-comodule with the comultiplication ∆H∗ : H∗ −→
H∗⊗H∗ as coaction. Write down the induced left H-module structure for
H∗.

9. Let H be a finite R-Hopf algebra and let A be a left H-module algebra. Let
{hi, fi}n

i=1 be a projective coordinate system for H and let Ψ : HomR(H, A) −→
A⊗ H∗ be the map defined by

Ψ(φ) =
n

∑
i=1

φ(hi)⊗ fi, φ ∈ HomR(H, A).

Endow HomR(H, A) with the convolution product from Exercise 4. Prove that
for every f , g ∈ HomR(H, A),

Ψ(φ ∗ ψ) = Ψ(φ)Ψ(ψ).

Hint: Let Φ : A⊗ H∗ −→ HomR(H, A) be the inverse of Φ. Try to prove that
φ ∗ ψ = Φ(Ψ(φ)Ψ(ψ)).
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Chapter 2

Hopf-Galois theory and the
Greither-Pareigis correspondence

1 Hopf-Galois extensions and Hopf-Galois objects

In this section we will introduce Hopf-Galois structures from two viewpoints: via
module algebras, and via comodule algebras. Given a Hopf-Galois structure, there
is a method of turning sub-Hopf algebras (quotient Hopf algebras respectively) into
subalgebras of the algebra which carries a Hopf-Galois structure. This is in a way a
generalization of the classical correspondence in Galois theory of fields, but it is in a
sense weaker, as not all subalgebras are reached by this process in general. We will
soon describe this method, but for a proof of some main properties we will need
a better understanding of algebras (via Γ-sets), an so some arguments have to be
postponed

Let K be any base field. All algebras over K are assumed finite-dimensional over
K unless said otherwise; the algebras bearing a Hopf-Galois structure will be as-
sumed to be commutative. Hom groups and tensor products without subscript are
taken over K.

Let H be a K-Hopf algebra. Recall that the defining map αA : H ⊗ A −→ A of
a module algebra A makes H act on A, by the simple rule h · x = αA(h ⊗ x) for
h ∈ H, x ∈ A. The defining map βA : A −→ A⊗ H∗ looks as follows in Sweedler
notation: βA(x) = ∑(x) x(0)⊗ x(1), where x ∈ A, and the factors x(0) and x(1) indicate
elements of A and H∗ respectively (see (1.4)).

There are two standard types of canonical isomorphisms for any triple X, Y, Z of
K-vector spaces:

Hom(X⊗Y, Z) ∼= Hom(X, Hom(Y, Z)) (Hom-Tensor adjunction)

and
Hom(X, Y⊗ Z) ∼= Hom(X, Y)⊗ Z.

This gives (recall that H∗ = Hom(H, K) and A = K⊗ A):

Hom(H ⊗ A, A) ∼= Hom(A, Hom(H, A))
∼= Hom(A, Hom(H, K⊗ A))
∼= Hom(A, Hom(H, K)⊗ A)

= Hom(A, A⊗ H∗).
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The twist in the last step is necessary, not for the existence of the isomorphism, but
to make it behave, with respect to module and comodule structures.

Definition 2.1.1. Let H be a K-Hopf algebra and A a left H-module algebra. Consider the
map j : A⊗ H −→ End(A) = Hom(A, A) defined by j(x⊗ h)(y) = x · h(y). In other
words: j(x⊗ h) is the action of h on A, followed by left multiplication with the element x.
Then A is said to be an H-Hopf-Galois (or H-Galois) extension if the map j is bijective.

We remark that if j is bijective and n, m denote the K-dimensions of A and H
respectively, then we get an equality nm = dim(A⊗ H) = dim(End(A)) = n2 and
hence n = m.

The prime example is the Hopf algebra K[G], where G is any finite group, for
any g ∈ G we have ∆K[G](g) = g⊗ g, the antipode SK[G] sends g to its inverse, and
εK[G](g) = 1. Assume L/K is G-Galois. Then L becomes an H-module algebra by
defining αL(g ⊗ x) = g(x); the action of the Galois group is simply encoded as a
map K[G]⊗ L −→ L. We check that L is indeed a module algebra: let x, y ∈ L and
g ∈ G. Then g(xy) = g(x)g(y), and on the other hand

∆K[G](g)(x⊗ y) = (g⊗ g)(x⊗ y) = g(x)⊗ g(y),

which contracts to g(x)g(y) under multiplication. The condition concerning the unit
map is obviously satisfied.

Dedekind has already showed that the elements of G, considered as elements of
End(L), are linearly independent, if we make End(L) into an L-vector space, vie left
multiplication by elements of L. But this is exactly saying that the map j is injective.
So for reasons of dimension, j is bijective.

Let us discuss H∗ and the comodule-algebra structure βL : L −→ L ⊗ H∗ in
detail, to get a clear picture in this classical setting. A basis for H∗ is given by the
elements eg (g ∈ G), where eg : K[G] −→ K is extraction of the g-th coefficient:
eg(∑h∈G rhh) = rg. We calculate the structure maps. First, since every k ∈ G satisfies
∆H∗(k) = k⊗ k, we get (eg · eh)(k) = eg(k)eh(k) for all g, h, k ∈ G; this is 1 if g = h = k
and 0 otherwise. Therefore egeh is eg if g = h and 0 otherwise. Elements e with e2 = e
are commonly called idempotents.

Now for the diagonal map of the dual; it is given by ∆H∗(eg)(h ⊗ k) = eg(hk).
This is 1 if hk = g and 0 otherwise, so ∆H∗(eg) is the sum of all eh ⊗ ek such that
hk = g. We leave it to the readers to determine the augmentation and the antipode
of H∗.

The dual H∗ can be described more simply as the set of maps Maps(G, K), also
written KG; a G-tuple (rg)g∈G is simply the map on G sending g to rg. In other terms,
the tuple (rg)g∈G is ∑g rgeg, and the idempotent eg corresponds to the tuple having
exactly one 1 at position g and zeros otherwise. From this one also sees that L⊗ H∗

likewise identifies with LG (the set of maps from G to L). We may now elucidate the
comodule structure.

The general rule for getting βA from αA uses a “dual basis” {hi, ϕi}i (see Defini-
tion 1.2.24) for the pair (H, H∗), and says β(x) = ∑i m(hi ⊗ x)⊗ ϕi = ∑i hi(x)⊗ ϕi.
(Recall that the rule going the other way is even simpler). In our case we already
have a beautiful dual basis: the elements g ∈ G for H, and the idempotents eg for
H∗. Thus:

β(x) = ∑
g∈G

g(x)⊗ eg.
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If we look at the identification L⊗KG = LG, the last sum is simply the map G −→ L
taking the value g(x) at g; in other words, the tuple (g(x))g∈G.

We need another definition.

Definition 2.1.2. Let J be another K-Hopf algebra, and A be a J-comodule algebra via β =
βA : A −→ A⊗ J. We define a map γ : A⊗ A −→ A⊗ J via γ(x⊗ y) = (x⊗ 1)β(y).
(So it is identity on the lefthand tensor factor, and restricted to the righthand tensor factor of
its source, it is β.) Then A is called a right H-object if the map γ is bijective.

Let us show that in the above example, the map L −→ L ⊗ H∗ = LG gives an
H∗-Galois object. Let {x1, . . . , xn} be a K-basis of L. Injectivity of γ : L⊗ L −→ LG

means that the elements β(xi) are not only K-linearly independent, but even over L.
Let us show this. We need that the n row vectors (g(xi))g are L-linearly independent.
It is equivalent to say that the square matrix M =

(
g(xi)

)
i,g has maximal rank. But

now we look at the columns
(

g(xi)
)

i of M. They are L-independent iff the elements
g of G are L-independent considered as maps L −→ L. And this is known, again
thanks to Dedekind.

Before proceeding, let us present another important class of Hopf-Galois exten-
sions/objects.

Definition 2.1.3. Let n be a fixed positive integer; a K-algebra A is called fully n-graded
if

A =
⊕

i∈Z/nZ

Ai, dimK(Ai) = 1 ∀i

and for all i, j ∈ Z/nZ, the multiplication of A induces an isomorphism Ai⊗ Aj −→ Ai+j.
In simpler terms, if Ai = Kxi, then xixj = ui,jxi+j where ui+j ∈ K is not zero.

Example 2.1.4. Assume u ∈ K, α is a root of xn − u, and the latter polynomial is
irreducible. Put A = K(α) (a field), and Ai = Kαi.

Now let C be another cyclic group of order n, written multiplicatively, with gen-
erator c. We will show that any fully n-graded algebra A is an H-Galois extension
with H = KC and an H∗-Galois object with H∗ = (KC)∗ = K[C]. Let us begin with
the latter. The map β : A −→ A⊗ H∗ = A[C] is defined as follows: Put βx = x⊗ ci

if x ∈ Ai (one says: x is homogeneous of degree i), and extend by linearity. Coasso-
ciativity is easy: take x ∈ Ai. Then (1⊗ ∆)β(x) = x⊗ ci ⊗ ci, and β⊗ 1 applied to
β(x) = x⊗ ci gives the same. Let us also check that the induced map γ is bijective.
Take a basis xi of every Ai. Then γ maps xj ⊗ xi to xjxi ⊗ ci, and the “fully graded”
condition ensures that these elements generate all of A[C]. This makes γ surjective,
hence bijective.

Let us quickly describe the corresponding H-Galois structure on the fully n-
graded algebra A; details left to reader. Recall that H = KC has a K-basis (e0, e1, . . . en−1)
of idempotents, each ei acting on K[C] as extraction of the coefficient at ci. One can
then check that ei ∈ H acts on A as projection to the direct summand Ai. – We note
in passing that one can prove a converse: indeed A is an H∗-Galois object (or as
we will see: equivalently, an H-Galois extension) only if A is fully graded and the
structures arise exactly as described.

We will now show that our definitions of Hopf-Galois extension/object behave
well in general when we switch the side. In the concrete examples above, we checked
it or at least mentioned it.

47



Proposition 2.1.5. Let H be a K-Hopf algebra, and α : H⊗ A −→ A, β : A −→ A⊗ H∗

be (co)module algebra structures that correspond to each other. Then A is an H-Galois
extension if and only if A is an H∗-Galois object.

Proof. The only real point is that the map j (attached to α) is bijective if and only if
the map γ (attached to β) is bijective. Ensuring this equivalence is a bit technical,
and we omit some details. Recall that the algebra A is assumed to be commutative.

We start by exhibiting two canonical K-linear maps. Both are isomorphisms; we
will not check this (it can be done by picking bases for example). They are:

η : A⊗ H −→ HomA(A⊗ H∗, A), η(a⊗ h)(b⊗ ϕ) = ϕ(h) · ab,

and

δ : HomK(A, A) = End(A) −→ HomA(A⊗ A, A), δ( f )(a⊗ b) = a f (b).

Recall our two maps j : A⊗ H −→ End(A) and γ : A⊗ A −→ A⊗ H∗, given by
j(a⊗ h)(b) = ah(b) and γ(a⊗ b) = (a⊗ 1) · β(b). The map γ gives rise to another
map γ∗ = HomA(γ, A) going from HomA(A ⊗ H∗, A) to HomA(A ⊗ A, A). We
consider the following diagram:

A⊗ H
j

//

η
��

End(A)

δ
��

HomA(A⊗ H∗, A)
γ∗ // HomA(A⊗ A, A).

If we can prove that this square commutes, then we are done: given that the vertical
maps are bijective, the upper horizontal map will be bijective if and only if the lower
one is.

As a preparation we calculate: γ∗( f )(a⊗ b) = f (γ(a⊗ b)) = f ((a⊗ 1) · β(b)) =
f (∑(b) ab(0) ⊗ b(1)). Now we take an element a⊗ h in the upper left hand module
and chase it two ways. We have j(a⊗ h)(b) = ah(b), so

δj(a⊗ h)(c⊗ b) = c j(h⊗ a)(b) = ca h(b).

Now for the other way round the square ( f being replaced by η(a⊗ h)):

γ∗η(a⊗ h)(c⊗ b) = η(a⊗ h)(∑
(b)

cb(0) ⊗ b(1)) = a ∑
(b)

cb(0) ⊗ h(b(1)) = ac h(b).

This concludes the argument.

Now we turn to a version of the classical Galois correspondence. For a G-Galois
extension L/K, we can associate to every subgroup U < G an intermediate field
Fix(U) = Fix(L, U) = {x ∈ L : σ(x) = x ∀σ ∈ U}, and it is known that we
obtain an inclusion-reversing bijection between the set (lattice) of all subgroups of
G and the set (lattice) of all fields between K and L (see Theorem 1.1.51). In the Hopf
setting, there will be two versions again, on the module side and on the comodule
side. It will be important to see that these two ways of viewing the correspondence
are equivalent. We say already here that in general the new correspondence will not
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be perfect - we will not get all intermediate algebras between K and A, not even if
A = L is a field.

If L/K is G-Galois, it is a H-Galois extension with H = K[G] as seen before. For
any subgroup U < G we have the sub-Hopf algebra H′ = K[U] in H, and the fixed
field E = Fix(U) can be described as

E = {x ∈ L : h(x) = ε(h)(x) ∀h ∈ H′}.

In other words, E is the subalgebra annihilated by the augmentation kernel of the
sub-Hopf algebra H′. This lends itself to a generalization. We note already here:
If J and J′ denote the duals of H and H′ respectively, then J = KG, J′ = KU, and
the induced surjective homomorphism J −→ J′ of Hopf algebras, call it g, is simply
restricting a G-tuple to an U-tuple. We will come back to this.

Definition 2.1.6. Let A be an H-Galois extension, and H′ ⊂ H an arbitrary K-sub-Hopf
algebra. The fixed algebra Fix(A, H′) = Fix(H′) is defined as the set {x ∈ A : h(x) =
ε(h)(x) ∀h ∈ H′}. Note that we use the simpler notation h(x) instead of αA(h⊗ x).

It is obvious that Fix(H′) is a subspace of A.
This construction reduces to the usual “fixed field” operation in the classical case,

as seen above.

Example 2.1.7. Let us review the fully graded situation for another example. We
take A to be a fully n-graded K-algebra, with its structure of H-Galois extension,
where H = KC, and C is cyclic of order n generated by c. If m is a divisor of n,
and C′ cyclic of order m, then there is a canonical surjective group homomorphism
C −→ C′, mapping c to c (a generator of C′). This gives a sub-Hopf algebra H′ ⊂ H,
consisting of the tuples (ri) whose i-entry ri ∈ K depends only on i modulo m, not
just modulo n. We look at elements a = ∑i ai ∈ A, where ai ∈ Ai, and we ask
when such an element is annihilated by all h − ε(h) with h ∈ H′. Let 0 ≤ k < n
not be divisible by m. Then there is an m-periodic tuple r having r0 = 0 and rk = 1.
Applying it to a, we get zero only if ak = 0. So we find that Fix(H′) consists exactly
of those a which have nothing in all degrees k that are not divisible by m; and this is
the fully n/m-graded algebra ∑0≤i<n;m|i Ai = A0 ⊕ Am ⊕ A2m ⊕ . . . .

Let us now describe the Fix construction on the comodule side, starting with a
motivating example. We will conclude this section by a proof that we get the same
outcome of the Fix construction on both sides.

Consider A = L a field Galois extension of K with group N. Then L is a J-object,
with J = KN = Maps(N, K); the map β sends x ∈ L to the tuple (σ(x))σ∈N. Let N′

be any subgroup of N. This gives a surjective homomorphism g : J −→ J′ = KN′ ,
simply by restricting tuples. We then have two maps f1, f2 : L −→ L ⊗ J = LN′ .
The first is β followed by L⊗ g, so x goes to (τ(x))τ∈N′ . The map f2 sends x ∈ L to
(x, . . . , x), that is, the N′-tuple which has all entries equal to x.

Then it is pretty obvious that f1(x) = f2(x) if and only if x is fixed under the
subgroup N′; in other words, the so-called equalizer {x ∈ L : f1(x) = f2(x)} of
the two maps f1 and f2 is the fixed field of N′ inside L. We now generalize this
construction.

Let A be a Hopf-Galois object for the Hopf algebra J, and let g : J −→ J′ be any
surjective homomorphism of K-Hopf algebras. Let u = uJ′ be the unit map of the
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algebra J′, that is, the map K −→ J′ that sends r ∈ K to r · 1J′ . (One might consider
u as an inclusion, but in the example J′ = KN′ this would be a bit unnatural as we
will see.) We define Fix(g) ⊂ A to be the equalizer of the two maps

A −→ A⊗ J −→ A⊗ J′, x 7−→ (idA ⊗ g)β(x);
A −→ A⊗ J −→ A⊗ J′, x 7−→ (idA ⊗ uε)β(x).

Let us check that this reproduces taking a fixed field, in the particular case just
discussed: Here g : KN −→ KN′ is the restriction map. The first map in the dis-
play just above specializes to the map f1. We look at uε: As u : K −→ KN′ is the
diagonal, sending x to (x, . . . , x), we get that uε: sends an N-tuple y to the N′-tuple
all of whose entries are ye (the e-entry of y). Hence the second map in the display
specializes to f2, as desired.

The proof of the following result has no particular difficulties (use the defini-
tions) and is omitted.

Proposition 2.1.8. 1. If A is an H-Hopf-Galois extension and H′ a sub-Hopf algebra of
H, then the set Fix(A) is a subalgebra of A.

2. If A is a J-Hopf-Galois object and g : J −→ J′ a surjection of Hopf algebras, then the
set Fix(g) is a subalgebra of A.

The operators Fix enjoy more properties. They are injective in the sense that
different sub-Hopf algebras (quotient Hopf-algebras) lead to different (co)fixed al-
gebras, and one can also predict the dimension of the fixed algebra. To prove these
statements, we need more technique, so this is deferred. For the moment, we “only”
prove compatibility of the Fix operators on the two sides. We consider the usual sit-
uation: A is a H-Hopf-Galois extension via α : H⊗ A −→ A, and the corresponding
structure of A as an H∗ = J-Galois object is β : A −→ A⊗ J. Let H′ be a sub-Hopf
algebra of H. Dualizing the inclusion H′ → H gives a surjective Hopf algebra map
J −→ J′ = (H′)∗, which will be denoted g.

Theorem 2.1.9. With these notations and assumptions, the fixed algebra Fix(H′) ⊂ A
agrees with the cofixed algebra Fix(g).

Proof. Recall the transition rule: if β(x) = ∑(x) x(0) ⊗ x(1) with x(1) ∈ J, then for
v ∈ H, we have u(x) = ∑(x) x(0) · x(1)(v). Let us assume x ∈ Fix(g), so ∑(x) x(0) ⊗
g(x(1)) = ∑(x) x(0) ⊗ uJε J(x(1)), where the structural maps iJ , ε J belong to J. Then
iJ(1) applied to v ∈ H is the scalar εH(v). We get for v ∈ H′ (the g may be inserted
because v is not just in H but in H′):

v(x) = ∑
(x)

x(0) · x(1)(v)

= ∑
(x)

x(0) · g(x(1))(v)

= ∑
(x)

x(0) · iJε J(x(1))(v)

= ∑
(x)

x(0) · εH(v)ε J(x(1))

= εH(v) · x,
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so x is indeed in Fix(H′).
For the other direction, assume that x is in Fix(H′). We choose dual bases (ui, hi)

(with i = 1, . . . , n) for H and J such that the following hold. h1 is the unit element of
J (that is, h1 = εH); u1 = 1H; u1, . . . , uk are a basis of H′ and all of them but u1 are in
the kernel of augmentation; and hk+1, . . . , hn are a basis of the kernel of g : J −→ J′.
In particular, (ui, hi)1≤i≤k is a dual basis for the pair H′, J′. By the general transition
rule from modules to comodules, we have β(x) = ∑n

i=1 ui(x)⊗ hi. Hence we obtain
(denoting the map g : J −→ H′ simply by overbar)

(1⊗ g)β(x) =
n

∑
i=1

ui(x)⊗ hi.

We now use that for i > k the term hi vanishes, that u1(x) = x, and ui(x) = 0
for i = 2, . . . k since x is H′-fixed; so the RHS in the preceding equation is simply
x ⊗ h1. On the other hand, uJε J annihilates all hi with i > 1, so we likewise obtain
(1⊗ uJε J)(∑i ui(x)⊗ hi = 1 · x⊗ uJε J(h1) = x⊗ h1. Therefore x is cofixed under g,
as desired.

2 Hopf-Galois structures on separable extensions

2.1 Describing (Hopf) algebras via Γ-sets

Our goal in this section is a description of finite-dimensional commutative algebras
A over a fixed base field K by a simpler object, almost combinatorial in nature. A de-
scription of (finite-dimensional) commutative K-Hopf algebras will also emerge al-
most for free. This technique will allow to prove some missing facts about (co)fixed
algebras in a Hopf-Galois situation, and it is an easy way towards Greither-Pareigis
(GP) theory, which will be treated in the next section. We will assume for simplicity
that our base field is of characteristic zero (or a finite field), so that all field exten-
sions are separable. (It would be sufficient to assume that all algebras that we use
are “separable”, but then we would have to define what that means.)

Every field K has an algebraic closure K, which can be thought of as a filtered
union of finite (in particular algebraic) field extensions L/K. In every concrete sit-
uation it would be enough to work with one such extension L/K. But very often
that field L needs to be changed (e.g. enlarged) in a longer argument, and it is a hin-
drance to fix such an L too early. The situation is similar to polynomials: one needs
the full polynomial ring a priori, and bounds on degrees of polynomials often tend
to obscure theoretical arguments that are otherwise clear. The price to pay is that
Γ = ΓK, the automorphism group of K/K, is (almost always) infinite. But this group
bears a very nice topology, called profinite. It suffices to know the following facts:
The open subgroups U are exactly the fixed groups of finite extensions L/K, and
they have finite index, equal to [L : K], in Γ; every open subgroup contains another
subgroup V still of finite index which is normal in Γ, and then G = Γ/V is the Galois
group of the fixed field Fix(V)/K. The group Γ will act on various finite sets , and
all actions will be continous in the following sense: for every s ∈ S, the so-called
stabilizer Γs = {γ ∈ Γ : γs = s} is open. Then the intersection of all stabilizers is
again open, contains an open normal subgroup V, and “in reality” the action is then
via the finite group G = Γ/V.
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After these preliminaries, let us repeat what a Γ-set S is: it is a set together with
a map Γ× S −→ S denoted by a dot in the middle or by nothing, such that some
obvious axioms are satisfied: eΓs = s, and β(γs) = (βγ)s for all s ∈ S, β, γ ∈ Γ. We
also say: The group Γ operates on the set S. The stabilizer of an element has already
be defined; it is always a subgroup. A typical example is the set S = {1, . . . , n},
acted upon by the symmetric group of order n!.

Another example is the linear group GL(n, K) action (via left multiplication by
matrices) on the column space Kn.

We offer some more remarks about group operations, for later use.

(1) The notion of morphism between two Γ-sets is so obvious that we do not have
to write it down.

(2) If s0 ∈ S, then Γs0 = {γs : γ ∈ Γ} is a Γ-subset of S, and it does not contain
any nonempty smaller Γ-subset. Such subsets are called orbits. Every Γ-set S
is the disjoint union of its orbits in an essentially unique way.

(3) For any subgroup ∆ < Γ, the set of cosets γ∆, γ ∈ Γ, is a Γ-set, via the operation
ρ(γ∆) = (ργ)∆. It is written Γ/∆ (careful: this need not be a group unless ∆ is
normal), and it has only one orbit.

(4) Every orbit in a Γ-set is isomorphic to the Γ-set Γ/V, where V is defined to be
the stabilizer of a chosen element.

LetAK be the class (or category) of all commutative finite-dimensional K-algebras
without nilpotent elements, and let SΓ be the category of all finite Γ-sets (with con-
tinuous action, always), where Γ is short for ΓK. Our goal is to establish inverse
bijections (more precisely equivalences of categories) Φ : AK −→ SΓ and Ψ going
the other way, and to see what happens to Hopf algebras under this correspondence.
We need a minimum of algebraic informaton on algebras.

Proposition 2.2.1. Let A be a finite-dimensional commutative K-algebra. If A has no
nonzero nilpotent elements, then A is isomorphic to a finite product of fields Li with [Li :
K] < ∞. (The reverse implication is also true, and obvious.)

Proof. (a) We first argue that A has only finitely many maximal ideals. Indeed let
(mi)i∈N be an infinite list of distinct maximal ideals. If we take xi ∈ mi \ms+1
for all i ≤ s, then the product x1 · · · xs is in the intersection m1 ∩ . . . ∩ms but
not in ms+1. Hence the intersection m1 ∩ . . . ∩ ms+1 is properly smaller than
m1 ∩ . . . ∩ms, which means that we have a properly descending infinite chain
of ideals, which is of course impossible.

(b) Every prime ideal p of A is maximal. Indeed if p is prime, the factor ring A/p
is still finite-dimensional over K and has no zero-divisors. It is well known
that this forces A/p to be a field. That is, the ideal p was maximal.

(c) The set of nilpotent elements in A is equal to the intersection of all prime ideals.
This is a standard fact with a standard proof, which will be omitted here.

(d) Now let m1, . . . ,mt be the complete list of the maximal ideals of A. This is
also the list of all prime ideals, so the intersection of the mi is zero, by part (c)
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and our hypothesis. By the Chinese Remainder Theorem we get A ∼= A/0 ∼=
∏t

i=1 A/mi, and it suffices to put Li = A/mi.

We now define the map (functor) Φ : AK −→ SΓ by setting

Φ(A) = AlgK(A, K).

Here AlgK(A, K) denotes the set of K-algebra homomorphisms ( = K-linear ring ho-
momorphisms) from A to K. We make Γ act on Φ(A) by the formula γ · ϕ = γϕ :
A −→ K, for all ϕ ∈ AlgK(A, K) and γ ∈ Γ. Recall that Γ is the automorphism group
of the field K over K, so the composition γϕ makes sense.

It is easily seen that Φ(A1 × A2) is the disjoint union of Φ(A1) and Φ(A2) (a
homomorphism ϕ must map exactly one of the idempotents (1, 0) and (0, 1) to 1,
and the other one to 0). If A = L is a field finite over K, then the action of Γ on Φ(L)
really happens through G = Gal(M/K) = Γ/ Fix(M), where M is any normal field
extension of K which is again finite-dimensional. We also note that the cardinal of
Φ(A) is the K-dimension of A, as is easily seen by reduction to the case that A = L
is a field.

Example 2.2.2. Let K = Q and A = Q(i). This is already a normal field extension.
The set Φ(A) has two elements f0 and f1; one of them is the inclusion in Q, the other
is complex conjugation. More generally, if A = L = K(α) where p(x) is the minimal
polynomial of α, then Φ(L) corresponds to the set {α, α2, . . . , αdeg(p)} of roots of p(x)
in the algebraic closure, just by looking at the image of α under f . This also shows
that the cardinal of Φ(L) equals [L : K]; because of the compatibility with products,
we have |Φ(A)| = dimK(A) in general.

Let us now define Ψ : SΓ −→ AK. Generally Maps(X, Y) denotes the set of
mappings from X to Y (this was also written YX earlier). If both sets are Γ-sets, then
we let MapsΓ(X, Y) = { f : X −→ Y| f (γx) = γ f (x) ∀x ∈ X ∀γ ∈ Γ}. Define

Ψ(S) = MapsΓ(S, K).

Via pointwise operations, Ψ(S) becomes a commutative ring, and also a K-vector
space; we will see its dimension is |S|. This K-algebra obviously has no nilpotents,
so it is in AK.

The two operators are inverse to each other. We will show this and in the process
gain a better understanding. Assume S is an orbit. Then S ∼= Γ/U with an open
subgroup U. Let L be the fixed field of U. Then [L : K] = [Γ : U]. We claim
Φ(L) identifies with S. Indeed via restriction, Γ surjects onto Alg(L, K̄, and γ, δ ∈
Γ become the same there iff their restrictions to L agree as maps; this in turn is
equivalent with γ−1δ being identity on L, that is, γ−1δ ∈ U, and this is finally the
same as saying γU = δU. On the other hand we claim that Ψ(Γ/U) identifies with
L. Indeed, for every f ∈ MapsΓ(Γ/U, K̄, the element x = f (eΓU bust be fixed under
U, hence in L; on the other hand, f is determined by x, given that f (γU) must be
γ(x), and any x ∈ L may take this role.

So we see that Φ and Ψ define inverse bijections between (finite) Γsets which are
orbits on the one side, and K-algebras which are field on the other side. Now any
Γ-set is the disjoint union of its orbits, and any algebra A is the product of fields. So
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the claim about Φ and Ψ also hold for the larger domains where they are defined,
given that our operators turn disjoint unions into cartesian products In passing we
have also proved: |Φ(A)| equals the K-dimension of A.

We give some examples:

Example 2.2.3. Recall that for any open subgroup H (of finite index) in Γ, we saw
that the fixed field L of H inside K corresponds to the Γ-set Γ/H.

Example 2.2.4. Let I be any finite set with trivial Γ-action (which means γi = i for
all γ ∈ Γ, i ∈ I). What are then the Γ-invariant maps f from I to K? All values of f
must again be fixed under Γ, and the fixed field of Γ is the ground field K, so we get
Ψ(I) = Maps(I, K) = K I the direct product of copies of K, indexed by I. A special
case of this is: The “trivial” algebra K corresponds to the one-point set. (Of course
the operation on that set cannot be other than trivial.)

Example 2.2.5. Fix an integer n > 1, and choose a primitive n-th root ζn of unity in
K. We define the cyclotomic character ω : Γ −→ (Z/nZ)∗ by γ(ζn) = ζ

ω(γ)
n . Using

this we make Z/nZ into a Γ-set, which will actually be considered as a Γ-group
later on: we denote reduction mod n by an overbar and define

γ · a = ω(γ)a, a ∈ Z/nZ.

Denote by Cn a multiplicatively written cyclic group of order n, and pick a generator
σ. Let A = K[Cn] be the group ring; we have A ∼= K[x]/(xn − 1) with σ mapping to
x.

We claim that Φ(A) is Z/nZ with the cyclotomic Γ-action just defined. Indeed,
the algebra homomorphisms from A to K are completely determined by the image
of σ, and this can be any power of ζn. Thus, let ϕa : A −→ K be the homomorphism
that sends σ to ζa

n. If we apply γ, we get the homomorphism that sends σ to γ(ζa
n) =

ζ
ω(γ)a
n . Identifying ζa

n with a ∈ Z/nZ we get the claim.

Example 2.2.6. We have seen that Φ turns direct products of algebras into disjoint
unions of sets. It is natural to ask: What corresponds to the direct product of sets
on the algebra side? The answer is simple, nice and important: Φ(A ⊗ B) can be
naturally identified with Φ(A)×Φ(B), since every algebra homomorphism starting
from A ⊗ B is uniquely characterized by what it does on A = A ⊗ 1, and on B =
1⊗ B.

At the end of this section, let us reconsider Hopf algebras in the light of this cor-
respondence. We have not yet commented on the obvious fact that Φ and Ψ are not
only defined on objects but also on maps (the technical details can safely be left to
our readers); and both of the correspondence reverse the direction of the maps. Oth-
erwise everything is preserved. Now a K-Hopf algebra H is just a K-algebra, with
three extra algebra maps, which are (in order of decreasing complexity): the comul-
tiplication ∆H : H −→ H ⊗ H, the antipode sH : H −→ H, and the augmentation
εH : H −→ K. These maps must also obey certain axioms, coded as diagrams. The
nice thing is now that we can mechanically translate all these things in the category
of Γ-sets. Let S = Φ(H). Then:

• ∆H gives mS : S× S −→ S;
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• sH gives iS : S −→ S;

• εH : H −→ K gives a map from the one-element set to S, that is: a distin-
guished element eS of S.

From the nature of the diagrams it becomes clear without further effort that the
Hopf axioms translate into saying that S is a group under mS, with neutral element
eS and inverse map iS. Furthermore, all maps on S etcetera are Γ-invariant. Let us
define a Γ-group N to be a group N which is also a Γ-set, with the obvious compat-
ibility condition that multiplication and formation of inverses commute with the Γ
action and eN is Γ-fixed. (This is actually a consequence. ) We obtain:

Theorem 2.2.7. There are inverse bijective correspondences Φ′ and Ψ′ between the category
HK of finite-dimensional commutative K-Hopf algebras on the one hand, and the category
GΓ of finite Γ-groups on the other. As before, the correspondences reverse all arrows; the
product of Γ-groups corresponds to the tensor product of Hopf algebras.

We give a few examples.

Example 2.2.8. Let us resume Example 2.2.4, assuming that the finite set I is a group
(still with trivial Γ-action). Then Ψ(I) = K I becomes a Hopf algebra; let us look at
the details, and we will recognize an old acquaintance . For i ∈ I let ei ∈ K I be the
idempotent having 1 at position i and zero everywhere else; then (ei)i∈I is a K-basis
of K I . From the definition of Ψ one can easily check the following:

∆ei = ∑
j∗k=i

ej ⊗ ek;

s(ei) = ei−1 ;
ε(ei) = δi,1. Kronecker’s delta; 1 is the neutral element of I

Example 2.2.9. We go back to Example 2.2.5. We have the Hopf algebra H = K[Cn]
with ∆H(σ) = σ ⊗ σ, SH(σ) = σ−1, and εH(σ) = 1. Recall that S = Φ(H) =
{ϕ0, . . . , ϕn−1} where ϕi(σ) = ζ i

n. We want to determine the group structure of S,
which as a set was in canonical bijection with Z/nZ, so we expect that bijection to
be also a group homomorphism. This is indeed the case: The product ϕiϕj in S is
given by the composition

H −→ H ⊗ H −→ K,

with the last map being h⊗ h′ 7−→ ϕi(h)ϕj(h′). Evaluated on σ, we get σ ⊗ σ and
then ϕi(σ)ϕj(σ), which is ϕi+j(σ). So indeed ϕiϕj = ϕi+j. This suffices to pin down
the group structure. Recall that we already determined the Γ-action; one should
spend a moment checking directly that the action is compatible with the group struc-
ture, as it has to be.

2.2 Translating Hopf-Galois structures and the Fix construction

We have a good understanding of algebras and Hopf algebras, via our correspon-
dence. It will not be a surprise that the correspondence also applies to Hopf-Galois
situations. Let us note two things: the resulting description is really simple, much
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simpler than the original one (this is perhaps not surprising), and the coalgebra ver-
sion (Hopf-Galois objects) is much more suitable for the translation than the algebra
version (which is perhaps surprising at first).

Recall what it means that A is an H-Hopf-Galois object: we have a sort of di-
agonal β : A −→ A ⊗ H which is co-associative and co-unitary, and the induced
map

γ : A⊗ A −→ A⊗ H, a⊗ b 7−→ (a⊗ 1) · β(b)
is an isomorphism. (Equivalently, A is an H∗-Hopf-Galois extension, but this will be
in the background for the moment.) We proceed to translate this into the language
of Γ-sets. Let A correspond to the Γ-set S, and let H correspond to the Γ-group N.

Then β translates into a map m = mS,N : S× N −→ S. The axioms of coassocia-
tivity and co-unitarity are equivalent then to saying that m defines a (right) action
of the group N on S, so S is a right N-set. (Recall that S is a left Γ-set.) We now ask
ourselves what the bijectivity of γ means in terms of sets; the answer will be nice.
As a preparation we need:

Definition 2.2.10. Let Π be a group acting on a set X from the right. (Left actions can be
treated similarly.) Then the action is transitive, if for any two x, y ∈ Y there is π ∈ Π with
xπ = y. The action is called simply transitive, when this π always exists, and is unique.

Remark 2.2.11. The action is transitive iff X is an orbit, that is, isomorphic to U\Ω
for some subgroup U. The action is moreover simply transitive iff that subgroup
is trivial. In other words: A set X with a simply transitive action of a group Ω is
basically a copy of the group, only that in X we do not have a distinguished element,
like the unit element in Ω.

Proposition 2.2.12. With the above notation, the map γ is bijective if and only if the result-
ing action of N on S (on the right) is simply transitive.

Proof. One mechanically translates γ into a map q : S × N −→ S × S, given by
q(s, ν) = (s, sν). The bijectivity of q is then equivalent to the simple transitivity of
the action of N on S.

This situation is only possible if S and N have the same cardinality. We already
know that these cardinalities are equal to the respective K-dimensions of K and H.
So we recover the fact that a Hopf-Galois situation is only possible if the algebra and
the Hopf algebra have the same dimension.

To complete the picture we revisit the Galois correspondence, that is, fixed and
co-fixed subalgebras. As mentioned before, it is simpler to work with the comodule
side. So assume that the algebra A is a J-Hopf-Galois object, and g : J −→ J′ is a
surjective homomorphism of Hopf algebras. Let S = Φ(A), N = Φ(J), and N′ =
Φ(J′). Then S has an action of N from the right which is simply transitive, and N′

embeds as a subgroup of N (we consider this as an inclusion). Let B = Fix(g) ⊂ A
be the co-fixed algebra; we want to understand T = Φ(B).

To do this we just have to translate the construction. As a set or vectorspace, B
was defined as a difference kernel of two maps δ0 and δ1. That is, B is the largest
subalgebra of A such that composing the inclusion ι : B −→ A with δ0, and δ1 re-
spectively, gives the same map. Hence T is the finest surjective image of S such that
composing Φδ0 (and Φδ1 respectively) with the surjection S −→ T gives the same
map. In other words, we are looking for the equivalence relation on S generated
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by the postulate that Φδ0(z) and Φδ1(z) are equivalent, for all z in the domain of
definition of the Φδi, which is S×N′. Now Φδ0 : S×N′ −→ S is just the action of N
on S, restricted to N′; and Φδ1 is the “no action” map, sending (s, ν) −→ s ∗ 1N = s.
Thus we are looking for the finest equivalence relation on S that makes s and s ∗ ν
equivalent, for all ν ∈ N′.

This description is very concrete: T is just “S modulo N′”, that is, the set of
N′-orbits in S. This set T still has an action of N from the right. The fact that N
acts simply transitively gives at once that all N′-orbits have |N′| elements, so |T| =
|N|/|N′|. We also see that T (or rather the equivalence relation defining it) allows
to recover N′. We repeat these insights:

Theorem 2.2.13. Let the notation be as above. Then we have an equality dimK(B) =
dimK(J)/ dimK(J′). Moreover the operator “co-fixed algebra” is injective, in the sense that
surjections J −→ J′ and J −→ J′′ that give rise to different subgroups N′, N′′ will also give
rise to different co-fixed algebras.

2.3 Base change

In this short section we take a different look at the (Hopf) algebras defined by Γ-
sets, and Γ-groups, respectively. This view is often taken in the literature, and there
it comes under the name “faithfully flat descent” or “Galois descent”.

The correspondences defined in the preceding section depend on the base field
K; in the present section it will be better to include this in the notation, writing ΦK
instead of Φ, and so on. Whenever L is a finite extension of K within K, the algebraic
closure of L is still K, and ΓL = Aut(K/L) is an open subgroup of ΓK. (Recall that if
L is normal, then G = ΓK/ΓL is the Galois group of L/K.)

We slightly rewrite the definition of ΨK. Remember that ΨK(S) is the set of all
ΓK-equivariant maps f : S −→ K. Actually Maps(S, K) is itself a Γ-set, by setting

(γ f )(s) = γ f (γ−1s), f : S −→ K, s ∈ S.

When one checks that this does define a ΓK-action, one will also see that one re-
ally needs to take inverses as written. But it is then clear that MapsΓK

(S, K) is then
exactly the set of all f ∈ Maps(S, K) which are fixed under this new action.

For the next lemma (which is simple but fundamental) we need a harmless bit
of notation: if X is any ΓK-set, and L as above, then X|L is the same set as X, but
with restricted action: only ΓL acts. It may seem unnecessary to indicate this, but
the reader will see that it is useful for clarity.

Lemma 2.2.14. With the above notations, we have for every commutative finite-dimensional
K-algebra A the following:

ΦL(L⊗K A) = ΦK(A)|L.

Proof. Again this will follow from the defining properties of the tensor product. Let
us look at L-algebra homomorphisms ϕ′ : L⊗K A −→ K. Then ϕ′(y⊗ a) = y · ϕ′(1⊗
a) for all y ∈ L and a ∈ A, so ϕ′ is uniquely determined by its restriction ϕ to 1⊗ A,
which we identify with A. This already identifies ΦL(L⊗ A) with ΦK(A) as sets. It
is then obvious that the action of ΓL is the same on both of these sets, now identified,
which finishes the argument.
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The following will be formulated for commutative K-algebras, but everything
holds also for comm. K-Hopf algebras with the appropriate changes. Consider a Γ-
set S and the corresponding algebra A. There exists an open subgroup U of Γ such
that H acts trivially on S, and we can even take U normal.

Let M be the fixed field of U; then U = ΓM, and G = Γ/U is the (finite) Galois
group of M/K. By the lemma, M ⊗ A is the “trivial” algebra MS = Maps(S, M),
because the ΓM-action on Maps(S, K) is just given by the action on K, and the fixed
field is M. The factor group G acts on Maps(S, M) in a way totally similar to the ΓK-
action on Maps(S, K): given g ∈ G and f : S −→ M, we have (g f )(s) = g f (g−1s).
Thus G acts by K-algebra automorphisms on M⊗ A, and the G-fixed subalgebra is
A, for the following reason: Taking ΓK-invariants at once is the same as first taking
ΓM-invariants and then taking G = ΓK/ΓM-invariants. Thus every comm. K-algebra
A can be obtained from a “trivial” M-algebra by taking invariants under a suitable
Gal(M/K)-action, for a suitable finite Galois extension M/K. This M is also called
a trivializing extension for A.

2.4 The so-called Greither-Pareigis correspondence

In this section, actions of Γ will be denoted by a dot · (or nothing), and an action of
a Γ-group on a Γ-set will be denoted by ∗. The former is from the left, and the latter
usually from the right.

Our classical example is A = L a G-Galois extension of K, with the structure
of KG-Hopf-Galois object given by β(x) = ∑g∈G g(x) ⊗ eg. The Γ-group N corre-
sponding to KG is the group G with trivial Γ-action; the Γ-set corresponding to L is
S = G = Γ/H where H is the group fixing L, with the obvious left Γ-action; and
one checks that the action of G (as the group) on G (as the set) is again given by the
group structure in G. This time the action is on the right.

Now let us look at a general situation: A is an H-Hopf-Galois object, with A
corresponding to the Γ-set S and H corresponding to the Γ-group N. It is intentional
that we don’t use the letter G here, since we are not assuming that A is a G-Galois
extension of K. By translation we get a simply transitive action ∗ : S × N −→ S.
The map N −→ Perm(S) which sends ν to πν : S ∋ s 7−→ s ∗ ν is injective, and an
anti-homomorphism of groups (if we use the usual composition as the group law in
Perm(S). Thus, giving N and its action on S is the same as giving a simply transitive
subgroup Π = {πν : ν ∈ N} of Perm(S).

Let us denote the map s 7→ γ · s (with s ∈ S and γ ∈ Γ) by λγ. (Later this will
indeed be a left multiplication.) The Γ-invariance of ∗ gives the following formula,
for γ ∈ Γ, ν ∈ N, and s ∈ S:

λγ(πν(s)) = πγ·ν(λγ(s)),

that is,
πγ·ν = λγπνλ−1

γ ,

or in terms of the group Π (we simply transfer the Γ-action from N to Π):

γ · ϕ = λγϕλ−1
γ , ∀ϕ ∈ Π.

This shows that in our setting the Γ-action on Π (or N) can be determined from the
other data, and moreover that Π as a subgroup of Perm(S) must be normalized by
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all the λγ, with γ ∈ Γ. (If Ω is any group with any subgroup U, then x ∈ Ω is said
to normalize U iff xUx−1 = U. The set NΩ(U) of all x that normalize U is called the
normalizer of U in Ω. It is the biggest subgroup of Ω which contains U as a normal
subgroup.)

Now assume A = L is a field. Then the Γ-set S becomes an orbit: it is Γ/Γ′

with Γ′ the open subgroup fixing L. (We have replaced U by Γ′, to conform with the
literature.) Then λγ : Γ/Γ′ −→ Γ/Γ′ is indeed multiplication by γ on the left. We
repeat what we have just seen:

Proposition 2.2.15. Let S = Γ/Γ′ as above and let Π ⊂ Perm(S) be a simply transitive
subgroup. Then the resulting action ∗ : S ×Π −→ S is Γ-equivariant if and only if the
Γ-action on Π is given by the formula

γ · π = λγπλ−1
γ .

In particular Π must be normalized by all the left translations λγ.

Let us denote the subgroup of Perm(S) made up by all the λγ by Λ. We refor-
mulate our findings as follows.

Theorem 2.2.16. Let L/K be a field, finite over K, with fixed group Γ′ ⊂ Γ. Then all
instances of “L is a H-Hopf-Galois object” are given by simply transitive subgroups Π ⊂
Perm(Γ/Γ′) such that Π is normalized by Λ. The Hopf algebra H is given by the group Π
and the Γ-action via Λ (by conjugation).

In the classical example where L/K is Galois with group G, the group Π is made
up by all right translations ργ as we have seen. Let us state this again, in differ-
ent words: G = Γ/Γ′ (which is also S!!), the group G acts on the set G by right
multiplication, so Π = G acting by right multiplications on G. Here Π is not only
normalized by Λ but actually centralized.

Let us revisit another example. Let K = Q, p an odd prime, a ∈ Q not a p-th
power. Let α = p

√
a. Then L = Q(α) has degree p; put H = Q[C where C is a cyclic

group of order p. We have seen that L/Q is an H-Galois object. Let Γ′ be the fixed
group of L and let Γ0 ⊂ Γ′ be the fixed group of the normal closure L′ of L, which
is given by E = Q(α, ζp). Finally write G for Γ/Γ0; this is the Galois group of L′/Q.
It is instructive (if a bit involved) to determine G explicitly. Let σ ∈ G be described
by σ(α) = ζpα and σ(ζp) = ζp. On the other hand τ ∈ G is specified by saying that
it fixes α and ζp to ζt

p where t is a chosen primitive root modulo p. Then G is the
semidirect product of the cyclic group C of order p generated by σ,which is normal,
and the cyclic group G′ of order p − 1 generated by τ. The action of the latter on
the former is (only in different notation) the cyclotomic one, and G′ is the image of
Γ′ in G, so Γ/Γ′ = G/G′. We can identify G/G′ with the set S = {0, 1, . . . , p− 1},
and the group Π (which is again cyclic of order p, with cyclotomic Γ-action) acts on
this by cyclic shifts. Observe that τ ∈ G acts on S as multiplication by t. So this
does not commute with the action of Π, but the group Π is normalized by τ which
is “multiplication by t”. In fact, the normalizer of the group Π (which is generated
by the cyclic permutation c : 0 7→ 1 7→ · · · 7→ p− 1 7→ 0) is exactly generated by c
and τ, as we will prove later.
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2.5 Explicit formulas

A variant of a previous example goes as follows (replace the odd prime p by the
number 4): Take a ∈ Q squarefree, a ̸= ±1. Take L = Q(x) with x4 = a, and
J = Q[C4], where C4 is cyclic of order 4 with chosen generator σ. Then one can
show that L has degree 4, and β : L −→ J ⊗ L, x 7−→ x ⊗ σ, makes L into a J-
Galois object. For S = Φ(L) we get the set {0, 1, 2, 3} with a certain Γ-action, and
N = Z/4Z with the cyclotomic Γ-action.

On the module side, we have H = J∗ = QZ/4Z, which is the product of four
copies of Q, indexed by 0, 1, 2, 3. We have corresponding idempotents e0, . . . , e3
(just one 1 and three zeros each), and the action of ej on L is projection to the one-
dimensional subspace Qxj. The same holds if we perform a base-change, that is we
tensor everything with E = Q(i) over Q; but then we should be careful and write
E ⊗ L instead of E(x) (even though one can show that these objects are equal, as
E(x) has degreee 8 over Q). We define

η = e0 + ie1 − e2 − ie3 = (1, i,−1,−i) ∈ E⊗ H.

The following lemma is checked by calculation, using that we know the diagonal
map on Hopf algebras of type KN.

Lemma 2.2.17. The element η is group-like, that is, ∆(η) = η ⊗ η. Note moreover that
η4 = 1.

Now we define c = 1
2(η + η3) and s = 1

2i (η − η3). In quadruple notation we
have c = (1, 0,−1, 0) and s = (0, 1, 0,−1). The action of c on L is certainly not an
automorphism; but if restrict the action to the quadratic subfield

L0 = Q⊕Qx2

, then c actually acts as the nontrivial automorphism of L0 (you should convince
yourself of this).

Lemma 2.2.18. 1. cs = 0 and c2 + s2 = 1.

2. ∆c = c⊗ c− s⊗ s and ∆s = s⊗ c + c⊗ s.

Remark 2.2.19. These formula explain the choice of the letters; c and s are intended
to be reminiscent of cosine and sine.

Proof. 1. The first formula is easy to show from the definitions, and actually ob-
vious if we look at c and s written as quadruples.

2. We have 2∆η = η ⊗ η + η−1 ⊗ η−1. On the other hand, for 4(c⊗ c− s⊗ s) we
get the eight-term sum η⊗ η + η⊗ η−1 + η−1⊗ η + η−1⊗ η−1 + η⊗ η− η⊗
η−1 − η−1 ⊗ η + η−1 ⊗ η−1. After simplifying and comparing we obtain the
first formula. The second formula is checked similarly.

We said that the element c ∈ H does not act as a (field) automorphism. This is
compatible with the fact that it is not group-like. However for x, y ∈ L we have the
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following formulas, which are reminiscent of the addition theorems for cosine and
sine:

c(xy) = c(x)c(y)− s(x)s(y);
s(xy) = s(x)c(y) + c(x)s(y).

It is open to debate whether these formulas are illuminating. It is certainly possible
to perform similar computations in examples of larger dimension, but in our opinion
the resulting formulas will not tell us much.

3 First applications of the main theorem

3.1 Almost classical extensions

This notion is inspired by the example L = Q( p
√

a), whose normal closure is L(ζp).
Here the group G = Gal(L(ζp)/Q) can be split as a semidirect product, one factor of
which is Gal(L(ζp)/L). This is in fact a rather special situation. (Of course it arises
in a trivial way if L/K is already a Galois extension itself.)

So assume that as always L/K is a finite-dimensional field extension with normal
closure L̃/K. Let G = Gal(L̃/K), and let G′ < G be the subgroup Gal(L̃/L). So if
Γ′ is the subgroup of Γ fixing L, then the set of cosets Γ/Γ′ identifies with G/G′.
Assume moreover that there is a normal extension M/K inside L̃ such that

ML = L̃, M ∩ L = K.

The field M will be called a complement for L in L̃. Let N < G be the group fixing
M; this is a normal subgroup with Gal(M/K) = G/N, and the intersection N ∩ G′

is trivial. Better than that: G is the semidirect product N ⋊G′. In the above example,
the field M is Q(ζp), and G is the semidirect product of two cyclic groups, the one
of order p− 1 acting on the one of order p, which is normal.

Let P ⊂ Perm(G/G′) be the set (= subgroup) of all left translations λν with
ν ∈ N. Recall Λ = {λγ : γ ∈ Γ} ⊂ Perm(G/G′).

Proposition 2.3.1. The group P acts simply transitively on G/G′, and it is normalized
by Λ. Therefore we obtain a Hopf-Galois object L −→ L⊗ H, where the Hopf algebra H
belongs to the abstract group P with Γ-action via Λ.

Proof. We first show that the action is transitive. It suffices that we can reach every
class gU from U = 1GĠ′, by applying an element of P. Indeed we can decompose
g = νu with ν ∈ N and u ∈ G′, and then λnu(1GG′) = ν · 1G · G′) = νG′ = gG′. The
uniqueness of ν is shown similarly; it follows from the fact that G′ and N intersect
trivially. Finally, P is normalized by Λ, because λgλνλg−1 = λgνg−1 , and gνg−1 ∈ N
since N is normal in G.

Example 2.3.2. We revisit L = Q( p
√

a) with hypotheses as before. Here we may take
M = Q(ζp), which is a normal (even abelian) extension of Q with degree p− 1, so
M∩ L = Q, and we have already used that ML = L̃ = L(ζp) is the normal closure of
L/Q. The resulting Hopf-Galois structure coming from this “almost classical” setup
is the same as the one explained before. Recall that the Γ-action on the cyclic group
N of order p is the cyclotomic action.
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Example 2.3.3. We take any non-normal cubic extension L/K. Then the Galois group
G of L̃/K must be a copy of the symmetric group S3, and G′ < G must be generated
by a transposition. So we can take N to be the unique subgroup of order 3 in S3; it
is normal as is well known. Let us pin this down: “All cubic extensions are Hopf-
Galois” (and even almost classically so).

Motivated by the last example, let us mention that there are extensions L/K
which are not Hopf-Galois at all. Indeed there are many, but let us just discuss
one class of examples. Let L/K be of degree 5 such that L̃/K has Galois group G iso-
morphic to the alternating group A5. Then S = G/G′ is a 5-element set, on which
G acts transitively, and in particular not trivially. So the resulting group homomor-
phism λ : A5

∼= G −→ Perm(S) is a nontrivial homomorphism defined on a simple
group, and therefore injective (the kernel is always a normal subgroup). That is, Λ
is a copy of A5 lying in Perm(S) ∼= S5. So Λ is a subgroup of index 2 in S5, hence
normal; hence it contains all 5-cycles (look at the image in the group S5/Λ of order
2). In fact Λ is A5, but we don’t need this. Now assume L/K is Hopf-Galois; this
gives a simply transitive subgroup N < Perm(S) normalized by Λ. But then N has
order 5, so it actually lies in Λ. On the other hand the simple group Λ does not
normalize any nontrivial subgroup, contradiction.

3.2 The Byott translation

We keep the following setup: L̃ is the normal closure of the finite extension L/K; the
Galois group of L̃/K is G; and the subgroup belong to L is G′ < G. Then G′ contains
no nontrivial normal subgroup of G, since otherwise L̃ would not be the minimal
normal over-field of L. One may always think of the example where G = Sn, and
G′ is the subgroup of all permutations that fix 1; then S = G/G′ identifies with
{1, . . . , n}; the dimensions are [L : K] = n and [L̃ : K] = n!.

If one wants to exploit GP theory fully, it is hard to find the eligible subgroups
Π ⊂ S = Perm(G/G′). Byott’s clever idea is to start with Π and look for G instead.
Of course this takes some explanation: what is the suitable structure inside of which
we may look for G? It is certainly not Π itself, that would be too simple. We begin
with some abstract group theory, omitting the proofs of statements which will not
really be used. In the following, let X be any group and f : X −→ X be any bijective
map. By Aut(X) we denote the set of all group automorphisms of X; this is again
a group, under composition. For x ∈ X, the map cx : X −→ X, y 7−→ xyx−1 is in
Aut(X), and called conjugation by x. Recall that λv is left translation by an element
v ∈ X.

Lemma 2.3.4. The following are equivalent:

(i) f (xy−1z) = f (x) f (y)−1 f (z), for all x, y, z ∈ X.

(ii) f can be written f = λu ◦ ϕ for some ϕ ∈ Aut(X), u ∈ X.

(iii) f can be written f = ϕ ◦ λv for some ϕ ∈ Aut(X), v ∈ X.

Proof. Most of the proof is easy and left to the reader. A few hints: Going from (ii) to
(iii), ϕ stays the same, but v is not the same as u (what is it, exactly?) The implication
(ii) to (i) is a calculation. Let us show how (i) =⇒ (ii).
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First step: The set of bijections f satisying (i) is closed under composition. (Fairly
obvious.)

Second step: Every left multiplication λd satisfies (i). (Quick calculation.)
Final step: Assume f satisfies (i). Let d = f (eX) and put g = λd−1 ◦ f . Then

g again satisfies (i), and it has the extra property that it maps the neutral element
eX to itself. Putting y = eX in the equality (i), we get that g is a homomorphism of
groups.

Definition 2.3.5. The subset of Perm(X) consisting of all f that satisfy one of the three
conditions of the lemma is called the holomorph Hol(X). As already said, this subset is
closed under composition, and in fact it is a subgroup.

It is easily seen that the decomposition in item (ii) of the lemma is unique. If ΛX
denotes the subgroup of all λx, x ∈ X, then ΛX is normalized by Aut(X) (see the
exercises), and we get a representation of the holomorph as a semidirect product:

Hol(X) = ΛX ⋊ Aut(X).

For later use we need a sharpening of this statement.

Proposition 2.3.6. Hol(X) is the exact normalizer of ΛX in Perm(X).

Proof. We already know that Aut(X) normalizes ΛX, and of course ΛX normalizes
itself. Putting these together we have that Hol(X) normalizes ΛX. The point is to
show the reverse inclusion. Assume f normalizes ΛX. As in the proof of the lemma
we write f = λg, where λ is left multiplication by a suitable element, and g fixes
e = eX. Then g also normalizes ΛX. Let us show that g is an automorphism. For any
x ∈ X there is x′ ∈ X such that gλxg−1 = λx′ . Evaluating this in e we get g(x) = x′,
so for all x we have the rule gλxg−1 = λg(x). Now we take x, y ∈ X and evaluate
w := gλxyg−1 two ways:

w = gλxg−1gλyg−1 = λg(x)λg(y) = λg(x)g(y);

and
w = λg(xy).

Evaluating w in e and using both these equalities shows that g(x)g(y) = g(xy) as
desired.

A good example for this is given by the cyclic group X = C of order p; we
identify C with Z/pZ. The left multiplications (rather: additions!) ΛC are then all
the powers (rather: multiples) of the p-cycle (0 1 . . . p− 1); this is again a copy of
Z/pZ. The automorphisms of C are given as multiplications by integers prime to p;
so Aut(C) is a copy of the unit group Z/pZ∗. The holomorph of C is a non-abelian
group of order p(p− 1), and it is the exact normalizer of ΛC.

Before reading on, please review the main result of GP theory. In the sequel we
will write N instead of Π, to conform with the literature. The main idea of Byott is,
very roughly: instead of having N permute G/G′, we let a copy of G permute N.
We set up some notation, and then we formulate and prove Byott’s result. We keep
the assumption that G is a finite group, G′ a subgroup, and G′ contains no nontrivial
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normal subgroup of G. Moreover we still assume that N is a group of order |G/G′|.
Define

N = {α : N −→ Perm(G/G′) : α(N) simply transitive};
and

G = {β : G −→ Perm(N) : β(G′) is the stabilizer of eN}.

Theorem 2.3.7. 1. There is an explicit bijection between the setsN and G (described in
the proof).

2. If α ∈ N corresponds to β ∈ G under that bijection, then α(N) is normalized by ΛG
if and only if β(G) is contained in Hol(N).

Before we come to the proof, let us quickly explain why this is so useful: While
Perm(G/G′) is in general much larger that G/G′, the holomorph Hol(N), while
larger than N, is much smaller, comparatively seen.

Proof. As a small preparation, we observe that any bijection of sets a : X −→ X′

induces another bijection Ca : Perm(X) −→ Perm(X′), simply by putting Ca(π) =
a ◦ π ◦ a−1. (You might draw a little diagram for yourself, to visualize this.) – More-
over we will need that the left-multiplication map λ : G → Perm(G) is injective.
Indeed its kernel is normal in G, and contained in G′, hence trivial, as said at the
beginning of this subsection.

(a) We explain how α turns into β. Let α be given; by assumption it induces a
bijection a : N −→ G/G′, via a(η) = α(η)(eG′). Let λ : G −→ Perm(G/G′) be
our well-known left translation map, and define

β = Ca−1 ◦ λ : G −→ Perm(G/G′) −→ Perm(N).

Then β is injective, as λ is injective (its kernel is normal in G and contained in
G′), and Ca even bijective. The stabilizer of eN under G (via β) is the stabilizer
of eG′ under G (via λ), and this is evidently G′. So the new map β is in the set
G.

(b) As a technical point, we claim and prove that Ca−1 ◦ α : N −→ Perm(N) is
the same as the left translation map λN. This comes down to checking the
commutativity of the following diagram for η ∈ N:

G/G′
α(η)

// G/G′

N
λη //

a

OO

N.

a

OO

We start with ν ∈ N in the southwest corner. For clarity, denote the class eGG′

by e. Going up and right, we get α(ν)e, and then α(η)α(ν)e. Going first right
and then up, we get ην and then α(ην)e, and this is the same.

(c) Now we explain how β turns into α. Let β : G −→ Perm(N) be given with
the indicated property. Then the orbit of eN under G must be all of N, since
G′ is the stabilizer of eN and the sets N and G/G′ have the same cardinality.
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This gives rise to a new bijection b : G/G′ −→ N via gG′ 7−→ β(g)eN. As
above, this induces the bijection Cb : Perm(G/G′) −→ Perm(N), and we
put α = Cb−1 ◦ λN : N −→ Perm(N) −→ Perm(G/G′). Again, we get
immediately that the map α is injective. The image α(N) is simply transitive,
because ΛN is a simply transitive subgroup of Perm(N). Therefore α ∈ N as
required.

(d) The two constructions, from α to β, are mutually inverse: here we will be a bit
shorter, and just say that if α leads to β, then the described bijections a and b
are inverses of each other, and this is enough for checking that then β leads
back to α.

(e) Now comes the final and central point: the equivalence of the additional prop-
erty of α with that of β. – Assume first that α(N) is normalized by ΛG, and β is
constructed out of α as explained in step (1) above. Then Ca−1α(N) is normal-
ized by Ca−1ΛG = β(G); by (2) we have Ca−1α(N) = λ(N), and so λ(N) is
normalized by β(G). By the proposition above (before the theorem), we con-
clude that β(G) ⊂ Hol(N). – Now assume that β is given, α is derived from it
as explained in (c), and that β(G) ⊂ Hol(N). This says: λ(N) is normalized by
β(G). Quite similarly as just before, this gives that Cb−1λ(N) is normalized by
Cb−1β(G). The former is α(N) by construction; the latter is λ(G), by the same
technical argument as in (b) above. This shows the required extra condition on
α.

Example 2.3.8. Let L/K be Galois in the classical sense. Then L̃ = L; G = Gal(L/K),
and G′ is trivial. This situation will be studied a lot later, but for now let us assume
that G has order p (a prime number). We claim that there is only one Hopf-Galois
structure for L/K. Indeed: in Byott’s translation, the “other” group N must also be
(cyclic) of order p. Therefore G must embed in Hol(N), which is known to us: it is
the semidirect product of an order p group (which is normal) by a group or order
p − 1. Hence the p-Sylow subgroup of Hol(N) is normal, and unique, so there is
only one choice for G. Thus there is only one choice on the other side (GP theory) as
well, and it must be the classical one.

Example 2.3.9. Let N = C2 × C2 (the non-cyclic group of order 4, which can also
be seen as the two-dimensional F2-vectorspace). Then Aut(N) = GL2(F2) is non-
abelian of order 6, and Hol(N) has order 24. As Perm(N) has only 24 elements as
well, we have Hol(N) = Perm(N). If we identify Perm(N) with S4 (the details do
not matter), any 4-cycle in Hol(N) generates a simply transitive subgroup G. That
is: Every cyclic extension L/K of degree 4 admits a Hopf-Galois structure in which
the involved group N is (of order 4 of course but) non-cyclic.

To finish this section we discuss a larger class of field extensions.

Theorem 2.3.10. Assume [L : K] is a prime number p, and let G = Gal(L̃/K) as usual.
Then L/K admits a Hopf-Galois structure if and only if G is solvable, and the latter happens
exactly if G is a semidirect product C ⋊ ∆, where C is of order p and ∆ is a cyclic group of
order dividing p− 1.
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Proof. Assume that L/K has a Hopf-Galois structure. The group N such that G
embeds into Hol(N) is also of order p, so Hol(N) is our old acquaintance Z/pZ ⋊
Z/pZ∗, which is solvable. Hence G is also solvable, as a subgroup of a solvable
group. Conversely, assume that G is solvable. By general Galois theory, G is a
transitive subgroup of Sp, and (in particular) p divides |G|. By the Sylow theorem G
contains a subgroup P of order p.

The following result is due to Galois; it is mentioned but not proved in the book
of Childs [Chi00]. We will give a proof at the end of the section. Here is the state-
ment.

Theorem 2.3.11 (Galois). A solvable subgroup G of Sp that contains an order p subgroup
P is already contained in the normalizer of P, which can be identified with the holomorph of
P.

Now we assume the validity of the theorem: this shows our Galois group G lies
between P and Hol(P), for a cyclic group P, and then we only have to take N = P
and appeal to the Byott translation.

Proof. (of Theorem 2.3.11.) Assume the contrary, that is, P is not normal in G. As p2

does not divide |Sp|, the subgroup P is a p-Sylow subgroup; if it is not normal, then
G contains two (or more) subgroups of order p. The case |G| = p (hence G = P)
cannot occur. As G is solvable, G then contains a nontrivial subgroup H which is
normal. Under the action of H, the set {1, . . . , p} splits up into disjoint orbits, which
cannot all be trivial (singletons). On the other hand, G acts transitively on this orbit
decomposition, so all H-orbits are of the same length. As p is prime, this is only
possible if there is only one orbit, in other words: already H is transitive. Hence p
divides |H|, and we can pick an order-p subgroup P′ in H. Then P′ is G-conjugate
to all subgroups of order p in G, and there is more than one of them. As P′ ⊂ H and
H is normal, all these conjugates lie already in H. We have shown: the statement
“more than one subgroup of order p” is inherited from G down to H. But H is
strictly smaller, and we may repeat the argument indefinitely. As our groups are
finite, this is a contradiction.

4 The Greither-Pareigis correspondence revisited

This section revolves around Theorem 2.2.16, the one commonly known as Greither-
Pareigis theorem. In a few lines, if K is a field with algebraic closure K and Γ =
Gal(K/K), the theorem establishes that the equivalence from Section 2.1 between
the categoriesAK (finite-dimensional commutative K-algebras without nilpotent el-
ements) and SΓ (finite Γ-sets) defined by the maps Φ and Ψ restricts to a bijective
correspondence between the Hopf-Galois structures on a separable extension of K
with fixed subgroup Γ′ and the simply transitive subgroups of Perm(Γ/Γ′) normal-
ized by left translations of Γ/Γ′. Most of the importance in this result lies in the
fact that it ties the determination of Hopf-Galois structures on separable extensions
with group theory. In this section, we will reformulate the theorem in a way that
is more convenient for many applications, and we shall see the explicit form of the
correspondence.
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4.1 An alternative glance to the main theorem

We start by rewriting Theorem 2.2.16 in a convenient way to work with.
Let L/K be a separable field extension with algebraic closure K. Call Γ = Gal(K/K)

and Γ′ = Gal(L/L). As already mentioned, Greither-Pareigis theorem establishes
an one-to-one correspondence between Hopf-Galois structures on L/K and the sub-
groups of Perm(Γ/Γ′) that are simply transitive and normalized by the set Λ of left
translations by elements γ ∈ Γ.

First, simply transitive subgroups of Perm(Γ/Γ′) are, by definition, those whose
group action on Γ/Γ′ is simply transitive. From now on, we shall refer to such
subgroups as regular. For later use, we see some characterizations of this concept.

Proposition 2.4.1. Let X be a finite set and let N be a subgroup of Perm(X). Consider the
group action of N on X defined by evaluation. If two of the following three conditions are
satisfied, so is the other one.

1. |N| = |X|.

2. N acts transitively on X.

3. Given x ∈ X, StabN(x) = {η ∈ N | η(x) = x} = {1N}.

Proof. Fix x ∈ X. By the orbit-stabilizer theorem, we have |N| = |Orb(x)| |StabN(x)|.
Now, let us note that 2 is equivalent to |Orb(x)| = |X| and 3 is equivalent to
|StabN(x)| = 1. Then the statement follows immediately.

If X is a finite set and N is a subgroup of Perm(X), for each x ∈ X we consider
the map φx : N −→ X defined by φx(η) = η · x.

Proposition 2.4.2. Let X be a finite set and let N be a subgroup of Perm(X). The following
conditions are equivalent.

1. N is a regular subgroup of Perm(X).

2. Two of the conditions from Proposition 2.4.1 are satisfied.

3. The conditions from Proposition 2.4.1 are satisfied.

4. There is some x ∈ X such that φx is bijective.

5. For every x ∈ X, φx is bijective.

Proof. The equivalence between 2 and 3 has been already shown in Proposition 2.4.1.
Suppose that 1 holds, so that N acts simply transitively on X. In particular, the

action is transitive. Let us fix x ∈ X. Then, for each y ∈ X there is a unique ηy ∈ N
such that ηy(x) = y. By the uniqueness, the ηy define |X| different elements in N,
and they are all the elements of N (given η ∈ N, η = ηη(x)), so |N| = |X|. Hence 2
is satisfied. Conversely, assume that 3 holds. Let x, y ∈ X. Since N acts transitively
on X, there is η ∈ N such that η(x) = y. Suppose that µ ∈ N is such that µ(x) = y.
Then η(x) = µ(x), whence η−1µ(x) = x, that is, η−1µ ∈ StabN(x) = {1N}. Hence
η = µ, proving that the action is simply transitive.

Let us prove that 1 and 5 are equivalent. Given x ∈ X, we have that the map φx
is bijective if and only if there is a unique η ∈ N such that η · x = y, whence the
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claim follows. On the other hand, it is trivial that 5 implies 4. Finally, assume that
4 is satisfied, so that for some x ∈ X, φx is bijective. Then for each y ∈ X there is a
unique η ∈ N such that η · x = y, so N acts simply transitively on X and 1 holds.

On the other hand, in Section 3, we have used an alternative quotient set G/G′

of Galois groups, that comes from choosing the normal closure of our separable
extension L/K, instead of its algebraic closure. This is valid because the left cosets
of Γ/Γ′ and G/G′ can be identified. In the following we offer a complete proof for
the validity of this step.

Proposition 2.4.3. Let L/K be a finite and separable extension of fields and let E/K be a
Galois extension with L ⊂ E. Call GE = Gal(E/K) and G′E = Gal(E/L). The Hopf-
Galois structures on L/K are in bijective correspondence with the regular subgroups of
Perm(GE/G′E) normalized by the set Λ of left translations by elements g ∈ G.

Proof. We know by Theorem 2.2.16 that the Hopf-Galois structures on L/K are in
bijective correspondence with the regular subgroups of Perm(Γ/Γ′) normalized by
the set Λ of left translations by elements γ ∈ Γ. We shall prove that the latter are in
bijective correspondence with the regular subgroups of Perm(GE/G′E) normalized
by Λ, whence the statement will follow.

Since E/K is Galois, by Theorem 1.1.58, G(E) := Gal(L/E) is a normal subgroup
of Γ and the restriction maps Γ −→ GE, Γ′ −→ G′E induce group isomorphisms

Γ/G(E) ∼= GE, Γ′/G(E) ∼= G′E.

Then, the map φ : Γ/Γ′ −→ GE/G′E defined by φ(γΓ′) = γ |E G′E is bijective.
At the same time, such a map induces a group isomorphism Φ : Perm(Γ/Γ′) −→
Perm(GE/G′E) defined as Φ(η)(φ(γΓ′)) = φ(η(γΓ′)). It is enough to check that a
subgroup of Perm(Γ/Γ′) is regular and normalized by Λ if and only if it is mapped
by Φ to a regular subgroup of Perm(GE/G′E) normalized by Λ.

Let N be a regular subgroup of Perm(Γ/Γ′) and let us prove that Φ(N) is reg-
ular. Let a, b ∈ GE/G′E and write x = φ−1(a) and y = φ−1(b). Since N is regular
and x, y ∈ Γ/Γ′, there is a unique η ∈ N such that η(x) = y. Now, Φ(η)(a) =
Φ(η)(φ(x)) = φ(η(x)) = φ(y) = b. The uniqueness of Φ(η) follows from the
bijectivity of Φ. Hence Φ(N) is regular. The converse is proved in the same way.

Let N be a subgroup of Perm(Γ/Γ′) normalized by Λ. Given γ, µ ∈ Γ, we have

λγ|E ◦ φ(µΓ′) = λγ|E(µ |E G′E) = (γµ) |E G′E = φ(γµΓ′) = φ ◦ λγ(µΓ′).

Since µ is arbitrary, we obtain that λγ|E ◦ φ = φ ◦ λγ. Let us check that λγ|E ◦Φ(N) ◦
λ−1

γ|E
⊆ Φ(N). Let η ∈ N. For an arbitrary g ∈ GE, let µ ∈ Γ be such that g = µ |E.

Then

λγ|E ◦Φ(η) ◦ λ−1
γ|E

(gG′E) = λγ|E ◦Φ(η)((γ−1µ) |E G′E)

= λγ|E ◦Φ(η)(φ(γ−1µΓ′))

= λγ|E ◦ φ ◦ η(γ−1µΓ′)

= φ ◦ λγ ◦ η ◦ λγ−1(µΓ′)

= Φ(λγ ◦ η ◦ λγ−1)(φ(µΓ′))

= Φ(λγ ◦ η ◦ λγ−1)(gG′E).
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Since g is arbitrary, λγ|E ◦Φ(γ) ◦ λ−1
γ|E

= Φ(λγ ◦ η ◦ λγ−1). Now, since N is normal-
ized by left translations by hypothesis, we have λγ ◦ η ◦ λγ−1 ∈ N, so λγ|E ◦Φ(γ) ◦
λ−1

γ|E
∈ Φ(N), as we wanted. We conclude that Φ(N) is normalized by Λ. The

converse is proved likewise.

Proposition 2.4.3 means that, in order to characterize Hopf-Galois structures on
a separable extension L/K in terms of permutation subgroups, instead of choosing
an algebraic closure to construct the Galois groups Γ and Γ′, we can just choose any
finite and Galois extension of E containing L, and choose the corresponding Galois
groups GE and G′E.

The remaining ingredient concerning Theorem 2.2.16 is left translations of Γ/Γ′.
We have proved in Proposition 2.4.3 that, for any Galois extension E of K containing
L, we can consider instead the set of left translations λg : hG′E 7→ ghG′E of GE/G′E,
where GE and G′E are in the statement of that result. We can regard this as the image
of a map.

Definition 2.4.4. Let L/K be a finite and separable extension, let E/K be a Galois extension
with L ⊂ E and acquire the above notation. The left translation map of L/K associated
to E is the map

λE : GE −→ GE/G′E
g −→ hG′E 7→ ghG′E

The left translation map is not in general injective, and its kernel can be charac-
terized in terms of group theory.

Definition 2.4.5. Let G be a group and let G′ be a subgroup of G. The core of G′ inside G
is defined as

CoreG(G′) =
⋂

g∈G
gG′g−1.

In other words, it is the greatest normal subgroup of G contained in G′.

Proposition 2.4.6. Let L/K be a finite and separable extension, and let E/K be a Galois
extension with L ⊆ E. Call GE = Gal(E/K), G′E = Gal(E/L), and let λE : GE −→
GE/G′E be the left translation map of L/K associated to E. Then

Ker(λE) = CoreGE(G
′
E).

Proof. Let h ∈ GE. We have that

h ∈ Ker(λE)⇐⇒ λE(h) = IdGE/G′E

⇐⇒ hgG′E = gG′E for all g ∈ GE

⇐⇒ g−1hgG′E = G′E for all g ∈ GE

⇐⇒ h ∈ gG′Eg−1 for all g ∈ GE

⇐⇒ h ∈ CoreGE(G
′
E)

69



Let L/K be a finite and separable field extension. Note that the smallest field E
such that L ⊂ E is by definition the normal closure L̃ of L/K. This will be our pre-
ferred choice when we make use of Greither-Pareigis theorem. Call G = Gal(L̃/K)
and G′ = Gal(L̃/L). In short, we will say that L/K is (G, G′)-separable or G-separable.
In this case, the left translation map λ : G −→ G/G′ of L/K associated to L̃ is simply
called the left translation map of L/K. If no more quotient groups arise, we will nor-
mally write left cosets of G/G′ as g for a representative g ∈ G. Thus, for g, h ∈ G,
λ(g)(h) = λg(h) = gh.

Corollary 2.4.7. The left translation map λ of a (G, G′)-separable extension L/K is injec-
tive.

Proof. We know from Proposition 2.4.6 that Ker(λ) = CoreG(G′), which is by defini-
tion the greatest normal subgroup of G contained in G′. By definition of normal clo-
sure, L̃ is the smallest Galois field extension of K containing L. In other words, there
are no Galois extensions of K containing L and properly contained in L̃. Applying
the Galois correspondence, we get that there are no non-trivial normal subgroups of
G contained in G′. That is, CoreG(G′) = {1G}, proving the statement.

Let us focus on the normality condition for a permutation subgroup at the Greither-
Pareigis correspondence. Let L/K be a (G, G′)-separable extension and let λ : G −→
Perm(G/G′) be its left translation map. Since λ is injective, G is isomorphic with
its image λ(G), which is a subgroup of Perm(G/G′). We have an action of G on
Perm(G/G′) by letting λ(G) act by conjugation:

g · η := λ(g)ηλ(g−1), η ∈ Perm(G/G′).

The condition that a subgroup N of Perm(G/G′) is normalized by the left transla-
tions is just that this action restricts to N.

Definition 2.4.8. Let N be a subgroup of Perm(G/G′). We say that N is G-stable, or
that N is normalized by λ(G), if for every g ∈ G and η ∈ N,

λ(g)ηλ(g−1) ∈ N,

that is, λ(G) acts on N by conjugation.

Under this terminology, we can restate Theorem 2.2.16 as follows.

Theorem 2.4.9. Let L/K be a (G, G′)-separable extension. Then, there is a bijective corre-
spondence between:

1. The Hopf-Galois structures on L/K.

2. The regular and G-stable subgroups of Perm(G/G′).

We also give a term for an concept that has already appeared; namely, the isomor-
phism class of a permutation subgroup corresponding to a Hopf-Galois structure on
a separable extension.

Definition 2.4.10. The type of a Hopf-Galois structure H on a (G, G′)-separable extension
is defined as the isomorphism class of the subgroup N of Perm(G/G′) corresponding to H
under the Greither-Pareigis correspondence. We denote it by [N].

We can classify Hopf-Galois structures on a separable extension according to
their type. We saw that Byott’s translation allows us to count Hopf-Galois structures
of a given type on a separable extension.
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4.2 The explicit form of the correspondence

Let L/K be a (G, G′)-separable extension with normal closure L̃. In this part we de-
scribe the definition of the bijective (and inverse-to-each-other) maps involved in the
Greither-Pareigis correspondence. The following establishes a first relation between
a Hopf-Galois structure H on L/K and its corresponding permutation subgroup N.

Proposition 2.4.11 ([GP87], Proposition 1.3). Let L/K be a (G, G′)-separable extension
with normal closure L̃. Let H be a Hopf-Galois structure on L/K and let N be its cor-
responding regular and G-stable subgroup of Perm(G/G′). Then L̃ ⊗K H ∼= L̃[N] as
L̃-Hopf algebras.

First, we see how to recover H from N. To do so, we need some notions from
Galois descent theory. First, it is easy to check that the K-Hopf algebras together
with the homomorphisms of K-Hopf algebras form a category. The same is true for
L̃-Hopf algebras, but we shall consider a smaller category inside.

Let M be an L̃-Hopf algebra. An L̃-semilinear action of G on M is defined as a
map ∗ : L̃[G]⊗L̃ M −→ M such that for every g ∈ G, the map g ∗ − : M −→ M is
L̃-semilinear, that is, there is some field automorphism σg ∈ Aut(L) such that

g ∗ (λm) = σg(λ)g ∗m, λ ∈ L̃, m ∈ M.

If there are L̃-semilinear actions of G on L̃-Hopf algebras M, M′ respectively, an
L̃-linear map f : M −→ M′ is said to be G-equivariant if

g ∗ f (m) = f (g ∗m), g ∈ G, m ∈ M.

Definition 2.4.12. Let M be an L̃-Hopf algebra endowed with an L̃-semilinear action from
G. Consider the induced L̃-semilinear action of G on M⊗L̃ M as

g ∗ (m⊗m′) := (g ∗m)⊗ (g ∗m′), g ∈ G, m, m′ ∈ M.

We say that M is G-compatible if all the Hopf algebra operations of M are G-equivariant
maps.

The G-compatible L̃-Hopf algebras form a category where the morphisms are the
G-equivariant L̃-Hopf algebra homomorphisms.

Definition 2.4.13. Let M be a G-compatible L̃-Hopf algebra and write ∗ for the action of G
on M. The sub-Hopf algebra of M fixed by G is

MG := {m ∈ M | g ∗m = m}.

The main result for our purposes is the following:

Theorem 2.4.14. Let L/K be a separable extension with normal closure L̃ and let G =

Gal(L̃/K).

1. If H is a K-Hopf algebra, then L̃⊗K H is a G-compatible L̃-Hopf algebra.

2. If M is a G-compatible L̃-Hopf algebra, then MG is a K-Hopf algebra.
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Moreover, these assignments define an equivalence of categories between the category of K-
Hopf algebras and the category of G-compatible L̃-Hopf algebras.

This is explained at [Chi00, Paragraph before (2.13)].
As a consequence, for a G-compatible L̃-Hopf algebra M, L̃ ⊗ MG ∼= M as G-

compatible L̃-Hopf algebras. Likewise, for a K-Hopf algebra H, (L̃⊗K H)G ∼= H as
K-Hopf algebras.

Let N be a regular and G-stable subgroup of Perm(G/G′). Let λ be the left
translation map of L/K. That N is G-stable means that N is normalized by λ(G),
or equivalently, the conjugation action of G on Perm(G/G′) leaves N invariant. We
can easily extend this action to an L̃-semilinear action of G on L̃[N] by letting G act
on L̃ by means of the usual Galois action and on N by the action above. Explicitly,

g ∗
( n

∑
i=1

hiηi

)
=

n

∑
i=1

g(hi)λ(g)ηiλ(g−1), (2.1)

where g ∈ G, n ∈ Z>0 and, for each 1 ≤ i ≤ n, ai ∈ L̃ and ηi ∈ N. This is indeed
semilinear: if g ∈ G, λ ∈ L̃ and h = ∑n

i=1 hiηi ∈ L̃[N], then

g ∗ (λh) = g ∗
( n

∑
i=1

λhiηi

)
=

n

∑
i=1

g(λ)g(hi)λ(g)ηiλ(g−1) = g(λ)g ∗ h.

Proposition 2.4.15. Let L/K be a (G, G′)-separable extension with normal closure L̃. If
N is a regular and G-stable subgroup of Perm(G/G′), the L̃-group algebra L̃[N] is a G-
compatible L̃-Hopf algebra with respect to the action ∗ of G on L̃[N] defined at (2.1).

Proof. We need to check that the Hopf algebra operations of L̃[N] are G-equivariant.

• Multiplication: Given h = ∑n
i=1 hiηi, h′ = ∑n

j=1 h′jηj ∈ L̃[N] and g ∈ G,

g ∗mL̃[N](h⊗ h′) = g ∗
n

∑
i,j=1

hih′jηiηj

=
n

∑
i,j=1

g(hih′j)λ(g)ηiηjλ(g−1)

=
n

∑
i,j=1

g(hi)g(h′j)λ(g)ηiλ(g−1)λ(g)ηjλ(g−1)

=
( n

∑
i=1

g(hi)λ(g)ηiλ(g−1)
)( n

∑
j=1

g(h′j)λ(g)ηjλ(g−1)
)

= (g ∗ h)(g ∗ h′)
= mL̃[N]((g ∗ h)⊗ (g ∗ h′))

= mL̃[N](g ∗ (h⊗ h′))

(2.2)

• Unit: Given r ∈ K and g ∈ G,

g ∗ uK[G](r) = g ∗ (r1G) = r1G = uK[G](g ∗ r).
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• Comultiplication: Let h = ∑n
i=1 hiηi ∈ L̃[N] and g ∈ G. Then,

g ∗ ∆L̃[N](h) = g ∗
( n

∑
i=1

hiηi ⊗ ηi

)
=

n

∑
i=1

g(hi)λ(g)ηiλ(g−1)⊗ λ(g)ηiλ(g−1)

= ∆L̃[N]

( n

∑
i=1

g(hi)λ(g)ηiλ(g−1)
)

= ∆L̃[N](g ∗ h).

• Counit: For h = ∑n
i=1 hiηi ∈ L̃[N] and g ∈ G, we have

g ∗ ε L̃[N](h) = g ∗
( n

∑
i=1

hi

)
=

n

∑
i=1

g(hi) = ε L̃[N](g ∗ h)

• Coinverse: Again, given h = ∑n
i=1 hiηi ∈ L̃[N] and g ∈ G, we have

g ∗ SL̃[N](h) = g ∗
n

∑
i=1

hiη
−1
i

=
n

∑
i=1

g(hi)λ(g)η−1
i λ(g−1)

=
n

∑
i=1

g(hi)(λ(g)ηiλ(g−1))−1

= SL̃[N](g ∗ h).

Taking into account Proposition 2.4.11, we obtain an explicit description for the
underlying Hopf algebra. The action is also obtained by descent. We summarize
what we get at the following.

Proposition 2.4.16. Let L/K be a (G, G′)-separable extension and let N be a regular and
G-stable subgroup of Perm(G/G′). Let H be the Hopf-Galois structure on L/K that corre-
sponds to N under the Greither-Pareigis correspondence.

1. The underlying Hopf algebra of H is

L̃[N]G = {h ∈ L̃[N] | g ∗ h = h for all g ∈ G}.

2. The action of H on L is given as follows: For h = ∑n
i=1 hiηi ∈ H and α ∈ L,

h · α =
n

∑
i=1

hiη
−1
i (1)(α), (2.3)

where for each 1 ≤ i ≤ n, η−1
i (1)(α) is the image of α by a representative g of the left

coset η−1
i (1) ∈ G/G′.
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.
Let us check that the expression 2.3 is well defined. Take two representatives

g, k ∈ G of the left coset η−1
i (1) and an element α ∈ L. Since g and k belong to the

same left coset, g−1k ∈ G′ = Gal(L̃/L), so α = g−1k(α), that is, g(α) = k(α).
The correspondence in the converse direction follows easily from Proposition

2.4.11. Indeed, if H is a Hopf-Galois structure on a separable extension L/K with
normal closure L̃ and N is its corresponding subgroup, we have that L̃⊗K H ∼= L̃[N]

as L̃-Hopf algebras. By Corollary 1.2.19, N can be regarded as the group of grouplike
elements of L̃⊗K H.

4.3 The Greither-Pareigis theorem for Galois extensions

In this section we deepen in the specification of Greither-Pareigis theorem for Galois
extensions from Section 2.4 so as to visualize the group-theoretical description of all
their Hopf-Galois structures.

Let L/K be a Galois extension with group G. We know that K[G] together with
its classical action on L is a Hopf-Galois structure on L/K. We will often refer to this
as the classical Galois structure.

By definition, the normal closure of L/K is L̃ = L. Thus, in this case, the groups
G and G′ appearing at the statement of Theorem 2.4.9 are G = Gal(L/K) and G′ =
{IdG}. In other words, L/K is (G, {IdG})-separable. Thus, Theorem 2.4.9 becomes:

Theorem 2.4.17. Let L/K be a Galois extension with group G. There is a bijective corre-
spondence between:

• The regular and G-stable subgroups of Perm(G).

• The Hopf-Galois structures on L/K.

Let us specify what G-stable means in the Galois case. Following Definition 2.4.8,
a subgroup N ≤ Perm(G) is G-stable if the action of G on Perm(G) leaves N invari-
ant. Such an action is defined by conjugation with the image of G by the left trans-
lation of L/K from Definition 2.4.4. Since G′ = {1G}, the left translation becomes

λ : G −→ Perm(G),
g 7−→ λ(g)(h) = gh,

which is nothing but the left regular representation of G into Perm(G). Thus, N
being G-stable is just the condition that N is normalized by λ(G).

The absence of G′ allows us to consider an analogous map by the right side.

Definition 2.4.18. Let L/K be a Galois extension with group G. The right regular repre-
sentation of L/K is defined as the one of G, that is,

ρ : G −→ Perm(G),
g 7−→ ρ(g)(h) = hg−1.

The right regular representation ρ is clearly injective, as in the case of λ. In fact,
ρ(G) is the group of the right translations. Under this language, we have the follow-
ing.

74



Proposition 2.4.19. Let G be a group.

1. λ(G) and ρ(G) are regular subgroups of Perm(G).

2. ρ(G) is centralized by λ(G).

3. ρ(G) = λ(G) if and only if G is abelian.

As a consequence, λ(G) and ρ(G) are regular and G-stable subgroups, therefore
giving Hopf-Galois structures on L/K.

Proposition 2.4.20 ([Chi00], (6.10)). Let L/K be a Galois extension with group G. Then
ρ(G), as a regular and G-stable subgroup of Perm(G), corresponds to the classical Galois
structure (K[G], ·) on L/K.

By Proposition 2.4.19 3, when G is abelian, λ(G) and ρ(G) give the same Hopf-
Galois structure; otherwise they give two different Hopf-Galois structures.

Definition 2.4.21. Let L/K be a Galois extension with group G and suppose that G is not
abelian. The Hopf-Galois structure on L/K corresponding to λ(G) is called the canonical
non-classical structure.

When both Hopf-Galois structures arise, we shall use the label Hc for the classical
Galois structure, and write Hλ for the canonical non-classical structure.
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