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Chapter 1

Preliminaries on Galois theory and
Hopf algebras

1 Field theory and Galois theory

Field theory is motivated by the study of algebraic equations and their solutions, or
equivalently, the study of polynomials and their roots. The easiest example is that
of a second degree polynomial

ax2 + bx + c, a, b, c ∈ Q

for which the expression

x =
−b±

√
b2 − 4ac

2a
(1.1)

provides its two roots. If b2 − 4ac is not the square of an integer, these roots are not
rational numbers, but in any case they they lie in a field properly containing Q. The
usual situation is that an equation with coefficients in a field K has its solutions in
a bigger field L. This is why the basic notion in field theory is that of extensions of
fields.

Definition 1.1.1. An extension of fields is a pair (L, K) where L and K are fields such that
there is a ring monomorphism (or embedding) ι : K ↪→ L. We will say that L/K is an
extension of fields (or simply an extension) or that L is a field extension of K.

Typically, the embedding ι : K ↪→ L will be just the inclusion, which corresponds
to the situation in which K ⊆ L. For convenience, and unless specified otherwise,
we will always assume we are in this situation.

1.1 Finite and algebraic extensions

If L/K is an extension of fields, L is naturally endowed with K-vector space struc-
ture.

Definition 1.1.2. Let L/K be an extension of fields.

1. The degree of L/K, denoted by [L : K], is defined as the dimension of L as a K-vector
space.
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2. We say that L/K is finite if its degree [L : K] is finite.

3. We say that L/K is quadratic (resp. cubic, resp. quartic) if [L : K] = 2 (resp.
[L : K] = 3, resp. [L : K] = 4).

Example 1.1.3. 1. C/Q and R/Q are extensions of fields with infinite degree.

2. C/R is a quadratic field extension, since C has basis {1, i} as an R-vector
space.

When we have fields L, E and K such that K ⊆ E ⊆ L, we will say that E is an
intermediate field of the extension L/K.

Proposition 1.1.4 (Multiplicativity of degrees). Let E be an intermediate field on L/K.
The extension L/K is finite if and only if so are L/E and E/K. In that case,

[L : K] = [L : E][E : K]

Among the real numbers, we usually distinguish between rationals and irra-
tionals. But also, among the irrational numbers, there are those that are roots of
polynomials with rational coefficients (such as those expressed by radicals), which
are called algebraic, and those that do not enjoy this property (like e or π), called
transcendental. More generally:

Definition 1.1.5. Let L/K be an extension of fields.

1. We say that α ∈ L is algebraic over K if it is a root of some non-zero polynomial
f ∈ K[X]. Otherwise, we will say that α is transcendental.

2. We say that L/K is algebraic if all elements of L are algebraic over K.

There is the following basic result.

Proposition 1.1.6. Any finite field extension is algebraic.

The converse does not hold in general. For instance, the field of complex alge-
braic numbers over Q is an algebraic extension of Q that is not finite.

1.2 Subfield generated by a subset

We can construct easily finite extensions of fields from a field K and a subset of a
field extension L of K.

Definition 1.1.7. Let L/K be an extension of fields and let S be a subset of L. The subfield
of L generated by K and S, denoted by K(S), is defined as the intersection of all subfields of
L containing K of S.

The subfield of L generated by K and S can also be seen as the minimal subfield
of L containing both K and S.

Suppose that S = {α1, . . . , αn}. It is routine to check that

K(S) =
{ f (α1, . . . , αn)

g(α1, . . . , αn)
: f , g ∈ K[X1, . . . , Xn], g(α1, . . . , αn) ̸= 0

}
.

We will also denote K(S) ≡ K(α1, . . . , αn).
When the elements of S are algebraic, then K(S) is actually the minimal subring

of L containing both K and S. Thus, in order to describe the elements of K(S), it is
enough to consider polynomial expressions of the elements of S.
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Proposition 1.1.8. Let L/K be a field extension and let S = {α1, . . . , αn} ⊂ L be a set of
algebraic elements over K. Then

K(S) =
{

f (α1, . . . , αn) : f ∈ K[X1, . . . , Xn]
}

.

Example 1.1.9. 1. Let f (x) = x2 + ax + b with a, b ∈ Q be a monic quadratic
polynomial and let α be a root of f , that is,

α ∈
{−a +

√
a2 − 4b

2
,
−a−

√
a2 − 4b

2

}
.

It can be easily checked that Q(α) = Q(
√

a2 − 4b). Now, since
√

a2 − 4b is
algebraic,

Q(
√

a2 − 4b) = {x + y
√

a2 − 4b | x, y ∈ Q}.

As a Q-vector space, this has Q-basis {1,
√

a2 − 4b}. Therefore, Q(α)/Q is a
quadratic extension of Q.

2. Let L = Q(
√

3,
√

5). Since
√

3 and
√

5 are algebraic,

L = {a + b
√

3 + c
√

5 + d
√

15 | a, b, c, d ∈ Q}.

We see that {1,
√

3,
√

5,
√

15} is a Q-basis of L, so L/Q is a quartic extension.

3. The field Q(π) is the subfield of R generated by Q and π. It is not algebraic
over Q, since π is transcendental.

Normally, in field theory, to verify a property in an extension K(S)/K, it is
enough to verify it for S. This is the case for the algebraic property.

Proposition 1.1.10. Let L/K be an extension of fields and let S ⊆ L be such that L = K(S).
If all the elements of S are algebraic over K, then L/K is an algebraic extension.

1.2.1 Simple and finitely generated extensions

Definition 1.1.11. Let L/K be an extension of fields.

1. We say that L/K is simple if there is some α ∈ L such that L = K(α). In that case,
we will say that α is a primitive element of L/K.

2. We say that L/K is finitely generated if there are α1, . . . , αn ∈ L such that L =
K(α1, . . . , αn).

Before, we saw that every finite extension is algebraic but the converse does not
hold. In fact, the notion of finite generation provides a characterization.

Proposition 1.1.12. An extension of fields L/K is finite if and only if it is algebraic and
finitely generated.

In particular, if L/K is finite, then it is finitely generated, but the converse in
general does not hold (the extension Q(π)/Q above serves as a counterexample).
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1.2.2 The compositum of fields

Let L/K be an extension of fields and let E and F be intermediate fields of L/K.
In Definition 1.1.7, we may take E as ground field and S = F, so that E(F) is the
minimal subfield of L containing both E and F. Now, changing the roles of E and F,
F(E) is also the minimal subfield of L containing both E and F, so E(F) = F(E).

Definition 1.1.13. Let K be a field with algebraic closure K. Let E and F be two extensions
of K contained in K. The compositum of E and F is the minimal subfield of K containing
both E and F.

If E = K(α1, . . . , αn) and F = K(β1, . . . , βm), then

EF = K({αiβ j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}).

1.3 Minimal polynomial of an element

Let L/K be an algebraic extension and fix α ∈ L. Let us consider the map

Φα : K[X] −→ L
f (X) 7−→ f (α) .

It is a ring homomorphism with kernel

Ker(Φα) = { f ∈ K[X] | f (α) = 0}.

Recall that K[X] is a principal ideal domain (PID). Then, Ker(Φα) is a principal ideal,
that is, it is generated by a single polynomial. If f is such a generator and u ∈ K×,
then u f is another generator. If we multiply by the inverse of the leading coefficient
of f , we obtain a monic polynomial, which is the only monic generator of Ker(Φα).

Definition 1.1.14. Let L/K be an algebraic extension and let α ∈ L. The minimal polyno-
mial of α over K, denoted by min.poly.(α, K), is the monic generator of Ker(Φα).

The minimal polynomial of α over K is equivalently defined as the monic poly-
nomial in K[X] with minimal degree having α as a root, and therefore it is irreducible
over K. Its degree is actually the degree of K(α):

Proposition 1.1.15. Let L/K be an extension and let α ∈ L be an algebraic element over
K. Then, K(α)/K is a finite extension and

[K(α) : K] = deg(min.poly.(α, K)).

Moreover, calling n := [K(α) : K], {xi}n−1
i=0 is a K-basis of K(α).

We say that any two roots of the same minimal polynomial are conjugate.

1.4 Embeddings, isomorphisms and automorphisms of fields

In our context, an embedding is nothing but an injective homomorphism (i.e, a
monomorphism) of fields τ : L ↪→ E. Note that the requirement of injectivity is
equivalent to σ being non-trivial, since its kernel is either 0 or L.
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Definition 1.1.16. Let τ : L ↪→ E be an embedding and let K be a subfield of L. If τ(x) = x
for all x ∈ K, we will say that τ is a K-embedding.

Following the usual terminology, a bijective K-embedding is a K-isomorphism.
Two fields are said to be K-isomorphic if there exists a K-isomorphism between
them. A K-automorphism is a K-isomorphism τ : L −→ L. The group of K-automorphisms
of L will be denoted by AutK(L).

Definition 1.1.17. Let σ : K ↪→ E and τ : L ↪→ E be two embeddings. We say that τ is an
extension of σ if K ⊆ L and τ |K= σ.

Theorem 1.1.18. Let L/K be an algebraic extension, and let E be a field such that there is
an embedding σ : K ↪→ E. Let S ⊆ L be such that L = K(S). If all the polynomials in
{min.poly.(α, K) | α ∈ S} have all their roots in L, there is some embedding τ : L ↪→ E
that extends σ.

1.5 Splitting fields and algebraic closure

As already mentioned, a quadratic polynomial with rational coefficients may not
have its roots in Q, which is in fact the usual situation. Instead, its roots lie in a
quadratic field. More generally:

Theorem 1.1.19 (Fundamental theorem of algebra). The roots of a polynomial with co-
efficients in the field C of complex numbers lie in C.

Some people say the name of this theorem is unfortunate: it is not fundamental,
nor it is of algebra. In our case, it provides an illustration of the concepts we consider
in this part.

Definition 1.1.20. We say that a field K is algebraically closed if every polynomial with
coefficients in K has all its roots in K.

The fundamental theorem of algebra just states that C is algebraically closed. Ac-
tually, there is a smaller field that is algebraically closed; namely, the field of complex
algebraic numbers. Since it is algebraic over Q, it is obtained from adjoining to Q the
roots of all polynomials with rational coefficients. This is what we call an algebraic
closure of Q. In general:

Definition 1.1.21. An algebraic closure of a field K is an algebraically closed field L such
that L/K is an algebraic extension.

Theorem 1.1.22 (Steinitz). A field K possesses an algebraic closure and it is unique up to
K-isomorphism.

In particular, if f has its coefficients in a subfield K of the field of algebraic num-
bers, all its roots are algebraic numbers. In general, for any other field, we can find
an extension with this property.

Proposition 1.1.23. Let K be a field. There is a field extension L of K such that every
polynomial f ∈ K[X] has all its roots in L.

This allows us to make the following definition.
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Definition 1.1.24. Let L/K be an extension of fields. Let F ⊆ K[X] and let S be the set of
the roots of all polynomials in F . We say that L is a splitting field of F over K if L = K(S).

Note that if we choose F = K[X], we recover the notion of algebraic closure. As
in that case, the splitting field always exists and is essentially unique.

Proposition 1.1.25. Let K be a field and let F ⊆ K[X] be a subset of non-constant polyno-
mials. Then, there is a splitting field of F over K and it is unique up to K-isomorphism.

Example 1.1.26. The polynomial f (x) = x4− 2 has roots± 4
√

2,±i 4
√

2, so its splitting
field over Q is Q( 4

√
2, i).

1.6 Normal extensions

The class of normal extensions is fundamental in order to understand the notion of
Galois extension. It is defined as follows.

Definition 1.1.27. Let L/K be an algebraic extension and let L be an algebraic closure of L.
We say that L/K is normal if for every K-embedding σ : L −→ L we have that σ(L) = L
(equivalently, σ ∈ AutK(L)).

In other words, the normal extensions of K are those that are invariant under
K-embeddings, which turn out to be K-automorphisms. There are many characteri-
zations for normality, but we will just stand with this one.

Proposition 1.1.28. Let L/K be an algebraic extension. Then L/K is normal if and only if
for every polynomial f ∈ K[X] with some root in L, f possesses all its roots in L.

The explanation lies in the fact that the image of a root of a polynomial f ∈ K[X]
by an embedding σ : L −→ L is necessarily a root of f . Moreover:

Proposition 1.1.29. Let L/K be a normal extension and let α, β ∈ L be elements with the
same minimal polynomial over K. Then, there is some σ ∈ AutK(L) such that σ(α) = β.

Example 1.1.30. 1. Every quadratic extension L/K is normal. Indeed, there is
n ∈ K such that L = K(

√
n), and given an embedding σ : L −→ L, we have

σ(
√

n) = −
√

n, so σ(L) = L.

2. Let α = 3
√

2 be the real root of x3− 2. Then Q(α)/Q is not normal, because ζ3α

is another root of x3 − 2, where ζ3 = −1+
√
−3

2 , and ζ3α /∈ Q(α).

It is not true that the class of normal extensions is transitive, that is, for fields
K ⊆ E ⊆ L, it may happen that L/K is normal but E/K is not. However, we have
the following result.

Proposition 1.1.31. Let K, L and E be fields with K ⊆ E ⊆ L. If L/K is normal, then so is
L/E.

There is a notion of normal closure.
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Definition 1.1.32. Let L/K be an algebraic extension. We say that a normal extension
N of K containing L is a normal closure of L/K if it is the smallest extension of K with
this property. More accurately, for every normal extension N′/K and every K-embedding
σ : L ↪→ N′ there is some K-embedding τ : N ↪→ N′ making the following diagram com-
mutative:

L �
� //

σ   

N

τ
��

N′

In these notes, we will usually write L̃ for the normal closure of a field exten-
sion L/K. The following result provides a method to find a normal closure, and in
particular, it proves its existence.

Proposition 1.1.33. Let L/K be an algebraic extension and let S ⊆ L be such that L =
K(S). A normal closure of L/K is the splitting field of F = {min.poly.(α, K) | α ∈ S}
over K.

As in the case of the algebraic closure, the uniqueness is up to K-isomorphisms.

Proposition 1.1.34. The normal closure of an algebraic extension L/K is unique up to
K-isomorphism.

Example 1.1.35. 1. If L/K is a normal extension, its normal closure is L̃ = L.

2. Let L = Q(α) where α is the real root of x3 − 2. The other conjugates of α are
ζ3α and ζ2

3α. Therefore, the normal closure of L/Q is L̃ = Q(α, ζ3).

1.7 Separable extensions

The notion of separability for an extension is related with the (absence of) multiplic-
ity of roots.

Definition 1.1.36. Let K be a field. We say that a polynomial f ∈ K[X] is separable if it
does not possess multiple roots in an algebraic closure of K.

Equivalently, a polynomial f ∈ K[X] is separable if it has no multiple roots in
any extension of K where f has all its roots (such as the splitting field of f over K).

Definition 1.1.37. Let L/K be an algebraic extension of fields.

1. We say that an element α ∈ L is separable if min.poly.(α, K) is separable.

2. We say that L/K is separable if every element of L is separable.

As in the case of algebraic extensions, the class of separable extensions is transi-
tive.

Proposition 1.1.38. Suppose that L, K, E are fields with K ⊆ E ⊆ L. Then L/K is separa-
ble if and only if L/E and E/K are separable.

For a polynomial f with coefficients in a field K, let us write f ′ for the formal
derivative of f . Then, f has no multiple roots in an algebraic closure if and only if f
and f ′ have no common factors other than constants.
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Definition 1.1.39. A field K is said to be perfect if every algebraic extension of K is separable.

Recall that the characteristic of a field K, denoted char(K), is the smallest non-
negative integer n such that n1 = 0, and it is either 0 (if there is no such an n) or a
prime p.

Proposition 1.1.40. Fields with characteristic zero and finite fields are perfect.

We finish the section with the following important theorem.

Theorem 1.1.41 (Primitive element theorem). A finite and separable extension is simple,
that is, it admits some primitive element.

Since Q has characteristic zero, every algebraic extension of Q is separable. In
particular, every finite extension of Q is simple.

1.8 Galois extensions

Given a polynomial f ∈ K[X], we would be happy with a formula as (1.1): an ex-
pression that provides all its roots after a finite number of calculations. This is also
the situation with degree 3 and 4 equations, but from degree 5 on it does not hold
in general. A characterization for the existence of such an expression was found by
Galois, whose main idea was to study the permutations of the roots that preserve
the algebraic operations between them. In the modern language, these are the au-
tomorphisms of the field generated by Q and the roots. His findings motivated the
development of the so called Galois theory.

Definition 1.1.42. Let L/K be an extension of fields. We say that L/K is Galois if it is
normal and separable.

Note that joining Propositions 1.1.31 and 1.1.38, we obtain:

Corollary 1.1.43. Let K, L and E be fields with K ⊆ E ⊆ L. If L/K is Galois, then so is
L/E.

We have seen that an algebraic extension L/K is normal if for every f ∈ K[X], f
has all its roots in L. On the other hand, L/K is separable if for every f ∈ K[X], the
roots of f in an algebraic closure are all different. We deduce:

Corollary 1.1.44. Let L/K be a finite Galois extension of degree n. Then L/K possesses n
different embeddings, all of which are K-automorphisms.

It is the group of these K-automorphisms what we define as the Galois group.

Definition 1.1.45. Let L/K be a Galois extension. The Galois group of L/K, denoted
Gal(L/K), is defined as the group of K-automorphisms of L.

For a Galois extension L/K with Galois group G, we will sometimes say that
L/K is G-Galois.

Note that for an extension L/K which is not Galois, it makes perfect sense to
consider the group of K-automorphisms of L. Sometimes, in literature, the Galois
group is defined as such regardless of whether the extension is Galois or not. Even
though this is not our choice, such a group can be used to give a characterization for
the Galois condition.
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Proposition 1.1.46. Let L/K be an algebraic extension and let G = AutK(L). Denote

LG := {x ∈ L | σ(x) = x for all σ ∈ G}.

Then L/K is Galois if and only if LG = K.

The fact, observed by Galois, that the permutations of the roots preserving the
algebraic structure form a group, can be formulated in the modern language as fol-
lows.

Theorem 1.1.47 (Galois). Let L/K be a degree n Galois extension with group G and let
f ∈ K[X] be a degree n irreducible polynomial with roots in L. Then G permutes transitively
the roots of f , so there is a group monomorphism G ↪→ Sn by which G maps to a transitive
group.

Remark 1.1.48. Suppose that S = {α0, . . . , αn−1} is the set of roots of f . If the degree
of L/K is a prime number p, then G is isomorphic to a transitive subgroup of

{Πr,s | r, s ∈ Z, gcd(r, p) = 1},

where for each r, s ∈ Z with gcd(r, n) = 1, Πr,s is the permutation of the roots αi
defined by Πr,s(αi) = αri+s, where subscripts are considered mod p.

The utility of the Galois group is that it encodes information on the extension to
which it refers. For instance, we have the following facts, that are very useful when
one computes Galois groups.

Proposition 1.1.49. Let L/K be in the conditions of Theorem 1.1.47. Then, G embeds into
An if and only if its discriminant is the square of some element in K.

Recall that the discriminant of a polynomial f ∈ K[x] is defined as

disc( f ) = ∏
1≤i<j≤n

(αi − αj)
2,

where α1, . . . , αn are the roots of f .
A more important illustration of the above mentioned phenomenon is that the

subgroups of a Galois group are in bijective correspondence with the intermediate
fields of the extension to which it refers. This result is commonly known as the
fundamental theorem of Galois theory.

Definition 1.1.50. Let L/K be a Galois extension with group G and let H be a subgroup of
G. The subfield of L fixed by H is defined as

LH = {α ∈ L : σ(α) = α for all σ ∈ H}.

We will also denote the fixed subfield LH as Fix(L, H), or simply Fix(H) when L
is implicit in the context.

It is routine to check that a fixed subfield is actually a field.

Theorem 1.1.51 (Fundamental theorem of Galois theory). Let L/K be a finite Galois
extension. The following statements hold:

13



1. There is a bijective inclusion-reversing correspondence

{Subgroups of Gal(L/K)} −→ {Intermediate fields of L/K}
H 7−→ LH

Gal(L/E) ←− [ E

2. Given an intermediate field E of L/K, E/K is Galois if and only if Gal(L/E) is a
normal subgroup of Gal(L/K). In that case, the map

Gal(L/K) −→ Gal(E/K)
σ 7−→ σ |E

induces a group isomorphism Gal(L/K)/Gal(L/E) ∼= Gal(E/K).

1.9 Infinite Galois theory

The fundamental theorem of Galois theory does not necessarily hold for Galois ex-
tensions that are not finite: even though the notions of fixed fields and Galois group
make perfect sense for infinite extensions, there may be subgroups of the Galois
group that do not correspond to any intermediate field. Nevertheless, it is possible
to generalize the theorem to arbitrary Galois extensions by means of endowing the
Galois group with a topology, so that it becomes a topological group.

Let us briefly review the notions of topological and profinite group.

Definition 1.1.52. A topological group is a group G together with a topology on G in such
a way that the multiplication map (σ, τ) ∈ G × G 7−→ στ ∈ G and the inverse map
σ ∈ G 7−→ σ−1 ∈ G are continuous.

There is a natural notion for homomorphisms between these objects. Namely, if
G and G′ are topological groups, a map f : G −→ G′ is a homomorphism of topolog-
ical groups if f is a homomorphism of groups and a continuous map with respect
to the topologies on G and G′. We will say that f is an isomorphism of topological
groups if it is an isomorphism of groups and a homeomorphism.

Definition 1.1.53. A profinite group is a topological group G which is compact, Hausdorff
and such that the identity 1G admits a system of open neighbourhoods that are normal sub-
groups of G.

Proposition 1.1.54. For a topological group G, the following statements are equivalent:

1. G is profinite.

2. G is compact, Hausdorff and totally disconnected.

3. G is the projective limit of finite groups.

For the benefit of the reader, we recall briefly the notion of projective limit of
groups.

Definition 1.1.55. Let (I,≤) be a directed poset (i.e,≤ is a pre-order and every finite subset
of I has an upper bound). Let (Gi)i∈I be a family of groups and suppose that for each i, j ∈ I
with i ≤ j there is a morphism fij : Gj −→ Gi.
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1. We say that {Gi, fij}i,j∈I is a projective system if fii = IdGii and fik = fij ◦ f jk for all
i, j, k ∈ I with i ≤ j ≤ k.

2. The projective limit of a projective system {Gi, fij}i,j∈I is defined as the group

lim
←−
i∈I

Gi := {(ai)i∈I ∈∏
i∈I

Gi | fij(aj) = ai for all i, j ∈ I with i ≤ j}.

Thus, Proposition 1.1.54 shows that a finite group is necessarily profinite.
Now, let L/K be a Galois extension with group G. We shall endow G with a

natural topology, called the Krull topology. For a detailed exposition, see [Neu99,
Chapter IV, §1]. Let us write F for the family of intermediate fields E of L/K such
that E/K is a finite Galois subextension of L/K.

Definition 1.1.56. The Krull topology on G is defined as the topology of G for which a basis
of open neighbourhoods of an element σ ∈ G is formed by the left cosets

σGal(L/E), E ∈ F .

A Galois group G endowed with the Krull topology is a topological group. What
is more, it is a profinite group. This will follow from the following result, in which
we express G as a projective limit of finite groups.

Theorem 1.1.57. Let L/K be a Galois extension.

1. The set F together with the restriction maps πL,L′ : Gal(L′/K) −→ Gal(L/K),
where L, L′ ∈ F and L ⊆ L′, form a projective system.

2. There is an isomorphism of topological groups Gal(L/K) ∼= lim
←−
E∈F

Gal(E/K).

The correspondence theorem for arbitrary Galois extensions is as follows.

Theorem 1.1.58. Let L/K be a Galois extension.

1. There is a bijective inclusion-reversing correspondence

{Closed subgroups of Gal(L/K)} −→ {Intermediate fields of L/K}
H 7−→ LH

Gal(L/E) ←− [ E

Under this correspondence, the closed subgroups of Gal(L/K) that are also open cor-
respond to the finite subextensions of L/K.

2. Given an intermediate field E of L/K, E/K is Galois if and only if Gal(L/E) is a
normal subgroup of Gal(L/K). In that case, the map

Gal(L/K) −→ Gal(E/K)
σ 7−→ σ |E

induces an isomorphism of topological groups Gal(L/K)/Gal(L/E) ∼= Gal(E/K).
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2 Hopf algebras and their actions on modules

In this section we will introduce the notion of Hopf algebra. It is a versatile object
that appears in several areas of mathematics. Our interest in them is due to their
connection with group theory. Throughout this section, R will be a commutative
ring with unity 1 ≡ 1R and unadorned tensor products will be taken over R.

2.1 Basic definitions

Definition 1.2.1. An R-Hopf algebra is a 6-uple (H, mH, uH, ∆H, εH, SH) where:

1. H is an R-module.

2. mH : H ⊗ H −→ H and uH : R −→ H are R-linear maps that satisfy:

(a) (Associative property) Given a, b, c ∈ H,

mH ◦ (mH ⊗ IdH)(a⊗ b⊗ c) = mH ◦ (IdH ⊗mH)(a⊗ b⊗ c).

Equivalently, the following diagram is commutative:

H ⊗ H ⊗ H

mH⊗IdH

��

IdH⊗mH // H ⊗ H

mH

��
H ⊗ H

mH // H

(b) (Unit properties) Given a ∈ H and r ∈ R,

mH ◦ (uH ⊗ IdH)(r⊗ a) = r a = mH ◦ (IdH ⊗ uH)(a⊗ r).

Equivalently, the following diagrams are commutative:

H ⊗ R

s2

��

IdH⊗uH // H ⊗ H

mH

{{
H R⊗ Hs1
oo

uH⊗IdH

OO

where s1 : R ⊗ H −→ H and s2 : H ⊗ R −→ H are defined by s1(r ⊗ a) =
r a = s2(a⊗ r).

The map mH is called multiplication map, and uH is called unit map.

3. ∆H : H −→ H ⊗ H and εH : H −→ R are R-linear maps that satisfy:
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(a) (Coassociative property) For all h ∈ H,

(IdH ⊗ ∆H)∆H(h) = (∆H ⊗ IdH)∆H(h).

Equivalently, there is a commutative diagram:

H ⊗ H ⊗ H H ⊗ H
IdH⊗∆Hoo

H ⊗ H

∆H⊗IdH

OO

H
∆Hoo

∆H

OO

(b) (Counit properties) For all h ∈ H,

(εH ⊗ IdH)∆H(h) = 1⊗ h,

(IdH ⊗ εH)∆H(h) = h⊗ 1.

Equivalently, the following diagrams are commutative:

H ⊗ R H ⊗ H
IdH⊗εHoo

εH⊗IdH

��
H

−⊗1

OO

∆H

;;

1⊗−
// R⊗ H

The map ∆H is called comultiplication map and εH is called counit map or aug-
mentation.

4. ∆H and εH are ring homomorphisms, where H is endowed with the ring structure
induced by the maps mH and uH, and H ⊗ H is endowed with the ring structure in-
duced by the one at H.

5. SH : H −→ H is an R-linear map, called coinverse map or antipode satisfying the
following property:

mH ◦ (IdH ⊗ SH) ◦ ∆H(h) = εH(h) 1H = mH ◦ (SH ⊗ IdH) ◦ ∆H(h), h ∈ H.

If 1 and 2 hold, we say that (H, mH, εH) is an R-algebra.
If 1 and 3 hold, we say that (H, ∆H, εH) is an R-coalgebra.
If 1-4 hold, we say that (H, mH, uH, ∆H, εH) is an R-bialgebra.

We will usually refer to an R-Hopf algebra (H, mH, uH, ∆H, εH, SH) just as H,
leaving implicit the R-Hopf algebra operations.

Let H be an R-Hopf algebra. The R-module structure of H will be called the
underlying module of the R-Hopf algebra H. On the other hand, the operation

ab := mH(a⊗ b), a, b ∈ H
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endows H with a ring structure, called the underlying ring of the R-Hopf algebra
H. This is the ring structure at H mentioned at 4. Since we have assumed that R
is a ring with unity, the underlying ring of an R-Hopf algebra has always a unity,
namely 1H = uH(1R). Indeed,

1Ha = uH(1R)a = mH(uH(1R)⊗ a) = mH(uH ⊗ IdH)(1R ⊗ a) = 1Ra = a,

and similarly a1H = a.

Definition 1.2.2. Let M be an R-module. The twist map of M is the map τ : M⊗M −→
M⊗M defined by

τ(a⊗ b) = b⊗ a

for every a, b ∈ M.

Definition 1.2.3. Let H be an R-Hopf algebra.

1. We say that H is commutative if mH ◦ τ = mH. Equivalently, the underlying ring
structure of H is commutative.

2. We say that H is cocommutative if τ ◦ ∆H = ∆H.

2.2 First examples

Example 1.2.4. A commutative ring R with unity is an R-Hopf algebra over itself,
called the trivial Hopf algebra.

Example 1.2.5 ([Und15], Example 3.1.4). Let H = R[x, y]/⟨xy − 1⟩. This can be
naturally endowed with R-algebra structure. Define ∆H : H −→ H ⊗ H by

∆H(x) = x⊗ x, ∆H(y) = y⊗ y,

εH : H −→ R by
εH(x) = 1, εH(y) = 1

and SH : H −→ H by
SH(x) = y, SH(y) = x.

Then H is a commutative and cocommutative R-Hopf algebra.

The example of Hopf algebra that is of our interest is the following.

Definition 1.2.6. Let G be a group. The R-group algebra of G with coefficients in R,
denoted R[G], is the set

R[G] =
{

∑
g∈G

agg | ag ∈ R, ag = 0 for all but finitely many g ∈ G
}

.

If the group G is finite, the last condition is vacuous. Note that R[G] is free as an
R-module, and a basis is formed by the elements of G. This is a very useful fact: it
means that any R-linear notion or result referring to R[G] can be reduced to stating
or proving it for the elements of G. The same holds for tensor products of group
algebras.
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Proposition 1.2.7. Let G be a finite group. Then R[G] is an R-Hopf algebra with the
following operations:

1. Multiplication map defined by mR[G](g⊗ h) = gh for every g, h ∈ G and unit map
given by uR[G](r) = r1G.

2. Comultiplication given by ∆R[G](g) = g ⊗ g for every g ∈ G and counit given by
εR[G](g) = 1 for every g ∈ G.

3. Antipode SR[G] : R[G] −→ R[G] defined by SR[G](g) = g−1 for all g ∈ G and
extended by R-linearity.

Proposition 1.2.8. Let G be a group.

1. R[G] is commutative if and only if G is abelian.

2. R[G] is cocommutative.

3. If G is finite, R[G] is a free R-module with rank |G|.

The proof of these two results is a routine check that is left to the reader.
If R = K is a field, Proposition 3 is the statement that K[G] is a K-vector space

with dimension |G|.

2.3 Homomorphisms of Hopf algebras

We have defined a Hopf algebra as a structure composed by more simple structures.
In the same way, the notion of a homomorphism of a Hopf algebras arises naturally
as a homomorphism between these structures.

Definition 1.2.9. An R-Hopf algebra homomorphism between two R-Hopf algebras H, H′

is a map f : H −→ H′ such that:

1. f is an R-linear map between the underlying R-module structures of H and H′.

2. f is a homomorphism between the underlying ring structures of H and H′, that is:

(a) f ◦mH = mH′ ◦ ( f ⊗ f ).

(b) f ◦ uH = uH′ .

3. f preserves the comultiplication and the counit of H, meaning that:

(a) ∆H′ ◦ f = ( f ⊗ f ) ◦ ∆H.

(b) εH = εH′ ◦ f .

4. f preserves the antipode of H, meaning that f ◦ SH = SH′ ◦ f .

If f satisfies 1 and 2, we say that f is a homomorphism of R-algebras.
If f satisfies 1 and 3, f is said to be a homomorphism of R-coalgebras.
If f satisfies 1-3, we will say that f is a homomorphism of R-bialgebras.
In all these cases, H and H′ can be required to be just R-algebras, R-coalgebras or R-

bialgebras, respectively.
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The conditions 2a and 2b are equivalent to the commutativity of these diagrams:

H
f

// H′

H ⊗ H

mH

OO

f⊗ f
// H′ ⊗ H′

mH′

OO H
f

// H′

R
mH

__

mH′

>>

Likewise, the conditions 3a and 3b are equivalent to the commutativity of these
other diagrams:

H
f

//

∆H
��

H′

∆H′
��

H ⊗ H
f⊗ f
// H′ ⊗ H′

H
f

//

∆H ��

H′

∆H′~~
R

As for the condition 4, it is equivalent to the commutativity of this diagram:

H
f
//

SH
��

H′

SH′
��

H
f
// H′

We use the terminology of R-Hopf algebra monomorphisms, epimorphisms, en-
domorphisms and automorphisms in the usual way.

Definition 1.2.10. We say that two R-Hopf algebras H and H′ are isomorphic if there is
some isomorphism of R-Hopf algebras f : H −→ H′.

2.4 Sub-Hopf algebras

It is usual, when an algebraic structure is introduced, that we consider its substruc-
tures. In this section, we shall view the notion of R-sub-Hopf algebra of an R-Hopf
algebra. Fix an R-Hopf algebra H. Following the pattern viewed in other algebraic
structures (groups, rings, vector spaces, etc), we may think of an R-sub-Hopf alge-
bra of H as a subset B ⊆ H inheriting the Hopf algebra structure of H. This would
mean that we can restrict the Hopf algebra operations of H successfully so that they
endow B with Hopf algebra structure. However, there is a technical difficulty at this
point, and is related with the presence of the tensor product in the Hopf algebra
operations. Namely, if B ⊆ H, the canonical inclusion i : B ↪→ H induces the map

i⊗ i : B⊗ B −→ H ⊗ H,
s⊗ s −→ i(s)⊗ i(s),

but in general i ⊗ i is not injective. Thus, for those cases in which indeed i ⊗ i is
not injective, it does not make sense to wonder whether the multiplication map
mH : H ⊗ H −→ H of H restricts to B, since B ⊗ B is not a subset of H ⊗ H. Like-
wise, it does not make sense to ask if the image of B by the comultiplication map
∆H : H −→ H ⊗ H lies in B⊗ B.
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Definition 1.2.11. Let H be an R-Hopf algebra and let B be an R-submodule of H. Let
i : B −→ H be the canonical inclusion and suppose that i⊗ i is injective. We say that B is
an R-sub-Hopf algebra of H if:

1. mH(B⊗ B) ⊂ B and 1H ∈ B.

2. ∆H(B) ⊂ B⊗ B.

3. SH(B) ⊂ B.

In that case, the Hopf algebra operations of B are obtained by restricting those of H. Namely:

• Multiplication map: mB := mH |B⊗B : B⊗ B −→ B.

• Unit map uB := uH : R −→ B.

• Comultiplication map: ∆B := ∆H |B : B −→ B⊗ B.

• Counit map: εB := εH |B : B −→ R.

• Coinverse map: SB := SH |B : B −→ B.

The injectivity of i⊗ i is not restrictive at all. We can regard i⊗ i as the composi-
tion

B⊗ B
i⊗IdB // H ⊗ B

IdH⊗i // H ⊗ H

If B and H are flat as R-modules, both i⊗ IdB and IdH ⊗ i are injective, and hence so
is i⊗ i. In particular, this holds when R is a field, which will be our typical situation.

We finish the section with an example of computation of sub-Hopf algebras of a
group algebra over a field.

Theorem 1.2.12. Let K be a field and let G be a finite group. The K-sub-Hopf algebras of
K[G] are of the form K[H], with H a subgroup of G.

Proof. It is clear that any K-group algebra K[H] with H subgroup of G is a K-sub-
Hopf algebra of K[G].

Let B be a K-sub-Hopf algebra of K[G]. We must check that B is of the form K[H]
for some subgroup H of G. Since B is a K-sub-Hopf algebra of K[G], in particular,
B is a K-sub-vector space of K[G]. We know that G = {g1, · · · , gn} is a K-basis of
K[G]. Let m = dim(B) and let k = n−m. By basic linear algebra, we deduce that B
can be described by k equations

a11x1 + · · ·+ a1nxn = 0
· · ·
ak1x1 + · · ·+ aknxn = 0

with respect to the basis {gm+1, · · · , gn, g1, · · · , gm}. Let us consider the matrix

A =

a11 · · · a1n
· · · · · · · · ·
ak1 · · · akn

 .
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By Gauss method, A is congruent by rows to a matrix of the form 1 · · · 0 −λ
(1)
m+1 · · · −λ

(n)
m+1

· · · · · · · · · · · · · · · · · ·
0 · · · 1 −λ

(1)
n · · · −λ

(n)
n

 .

Then, B has a basis of the form
v1 = g1 + ∑n

i=m+1 λ
(1)
i gi

· · ·

vm = gm + ∑n
i=m+1 λ

(m)
i gi

.

Since B is K-sub-coalgebra, ∆B(vj) ∈ B⊗K S for all j ∈ {1, . . . , m}. Let us find the
coordinates of ∆B(vj) with respect to the basis {vi ⊗ vj}1≤i≤m,1≤j≤m of B⊗K S. We
have 

∆B(v1) = g1 ⊗ g1 + ∑n
i=m+1 λ

(1)
i gi ⊗ gi

. . .

∆B(vm) = gm ⊗ gm + ∑n
i=m+1 λ

(m)
i gi ⊗ gi

and then for 1 ≤ i, j ≤ m,

vi ⊗ vj = gi ⊗ gj +
n

∑
k=m+1

(λ
(j)
k gi ⊗ gk + λ

(i)
k gk ⊗ gj) +

n

∑
k,l=m+1

λ
(i)
k λ

(j)
l gk ⊗ gl.

Now, for each 1 ≤ i, j ≤ m, gi ⊗ gj only appears once in the expression of vi ⊗ vj.
If ∆C(vj) = ∑m

k,l=1 cklvk ⊗ vl, since the elements gk ⊗ gl are linearly independent in
K[G]⊗K[G], we deduce that ckl = 0 for all k, l ̸= j and cjj = 1. Thus, ∆(vj) = vj⊗ vj.
That is,

gi ⊗ gj +
n

∑
i=m+1

λ
j
i = gj ⊗ gj +

n

∑
k=m+1

λ
(j)
k (gk ⊗ gk + gk ⊗ gj) +

n

∑
k,l=m+1

λ
(j)
k λ

(j)
l gk ⊗ gl.

Since gj ⊗ gi does not appear in the leftside member and it does in the rightside

one with coefficient λ
(j)
i , λ

(j)
i = 0 for all i ∈ {m + 1, . . . , n}. Since j is arbitrary, we

deduce that vi = gi for all i ∈ {1, . . . , m}.
Let H = {g1, . . . , gm}. We have just checked that H is a K-basis of B, whence

B = K[H]. Since B is a K-subalgebra of K[G], H is a subgroup of G.

Remark 1.2.13. Theorem 1.2.12 will follow directly from a correspondence involving
Hopf algebras from the next chapter.

2.5 Sweedler’s notation

When doing computations in which R-coalgebras are involved, we will denote ele-
ments at the image of the comultiplication in an especial way so as to work with
them easily. This is the Sweedler notation. We shall work with Hopf algebras
just because it is our situation, but the following applies in the same way for R-
coalgebras. Let H be an R-Hopf algebra, and let h ∈ H. We write

∆H(h) = ∑
(h)

h(1) ⊗ h(2). (1.2)

22



Note that h(1) and h(2) are just symbolic labels that do not refer to any particular
element of H. We know that an element of H ⊗ H is a sum of elements of the form
h1⊗ h2 for h1, h2 ∈ C, and this expression refers to any sum of elements of such form
that equals ∆H(h).

As an immediate application, the counit properties at Definition 1.2.1 3b translate
into

∑
(h)

εH(h(1))h(2) = h = ∑
(h)

h(1)εH(h(2)). (1.3)

On the other hand, the coassociative property gives

∑
(h)

h(1) ⊗ h(2)(1) ⊗ h(2)(2) = ∑
(h)

h(1)(1) ⊗ h(1)(2) ⊗ h(2).

We denote this element by

∆2(h) = ∑
(h)

h(1) ⊗ h(2) ⊗ h(3).

At the same time, we can apply to this element any of the three maps which is the
tensor product of twice IdH and ∆H, and by coassociativity, all of them will give the
same element, denoted

∆3(h) = ∑
(h)

h(1) ⊗ h(2) ⊗ h(3) ⊗ h(4).

Iterating this procedure, we write

∆n−1(h) = ∑
(h)

h(1) ⊗ · · · ⊗ h(n)

for the unique element obtained by iterating coassociativity n times.

2.6 Grouplike elements

On a Hopf algebra we have distinguished elements that can be seen in a certain way
as analogues of elements of groups, the so-called grouplike elements.

Definition 1.2.14. Let H be an R-Hopf algebra. We say that a non-zero element h ∈ H is
grouplike if ∆H(h) = h⊗ h.

Example 1.2.15. Let G be a finite group. By definition of the comultiplication ∆R[G]

of the R-group algebra R[G], the elements of G are grouplike elements of R[G].

Proposition 1.2.16. Let H be an R-Hopf algebra and suppose that the only idempotents of
R are 0 and 1. If h ∈ H is grouplike, then εH(h) = 1.

Proof. Since h is grouplike, we have that ∆H(h) = h ⊗ h, and (1.3) translates into
h = εH(h)h. Applying εH yields

εH(h) = εH(εH(h)h) = εH(h)εH(h),

that is, εH(h) is idempotent of R. Our hypothesis in R gives εH(h) ∈ {0, 1}, and
since h ̸= 0, necessarily εH(h) = 1.

23



Remark 1.2.17. Some authors add the condition that εH(h) = 1 to the definition of
h being grouplike, and they label our grouplike elements as semi-grouplike. If R is a
field, the only idempotents of R are of course 0 and 1.

Write G(H) for the set of grouplike elements of an R-Hopf algebra H.

Theorem 1.2.18. If R is an integral domain, G(H) is linearly independent over R.

Proof. This proof comes from [Und15, Proposition 1.2.18], where the result is proved
under the assumption that R is a field.

If G(H) = ∅, then G(H) is R-linearly independent. If G(H) contains just one
element, this element is necessarily non-zero, so G(H) is R-linearly independent.
Thus we can assume that G(H) contains at least two elements.

Let us suppose that G(H) is R-linearly dependent. Since |G(H)| ≥ 2, G(H)
contains some R-linearly independent subset. Let m be the largest integer such that
G(H) contains an R-linearly independent subset S = {hi}m

i=1 with cardinal m. Let
h ∈ G(H)− S. Then there are scalars ri ∈ R such that

h =
m

∑
i=1

rihi.

Applying the comultiplication, since hi ∈ G(H), we have

∆H(h) =
m

∑
i=1

rihi ⊗ hi.

But, since h ∈ G(H), we also get

∆H(h) = h⊗ h =
m

∑
i,j=1

rirjhi ⊗ hj.

Hence,
m

∑
i=1

rihi ⊗ hi =
m

∑
i,j=1

rirjhi ⊗ hj.

Since S is an R-linearly independent subset of H by definition, {hi ⊗ hj}m
i,j=1 is an

R-linearly independent subset of H ⊗ H. Therefore rirj = 0 whenever i ̸= j and
r2

i = ri for every 1 ≤ i ≤ m. Since h ̸= 0, there is some 1 ≤ i ≤ m is such that ri ̸= 0.
Since R is an integral domain and ri(ri − 1) = 0, necessarily ri = 1. Moreover rj = 0
for any other j. We conclude that h = hi ∈ S, which contradicts our choice of h.

In Example 1.2.15 we saw that the elements of a group G are grouplike elements
of the R-group algebra R[G]. If R is an integral domain, we can use Theorem 1.2.18
to prove that the elements of G are actually all the grouplike elements of R[G].

Corollary 1.2.19. Let G be a finite group. If R is an integral domain, then G(R[G]) = G.

Proof. By Example 1.2.15, the elements of G belong to G(R[G]), so G ⊆ G(R[G]). But
by Theorem 1.2.18, |G(R[G])| ≤ rkR(R[G]) = |G|. Then the equality follows.

In particular, the grouplike elements of an R-group algebra form a group. This
is actually a general fact for grouplike elements of a Hopf algebra.
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Proposition 1.2.20 ([Chi00], (1.6)). G(H) is a group with the product of H.

Proof. First, since ∆H is an R-algebra homomorphism and the unit of H⊗H is 1⊗ 1,
∆H(1) = 1⊗ 1. Then 1 ∈ G(H), so G(H) is not empty.

Let h1, h2 ∈ G(H). Then,

∆H(h1 h2) = ∆H(mH(h1 ⊗ h2))

= mH⊗H(∆H(h1)⊗ ∆H(h2))

= mH⊗H((h1 ⊗ h1)⊗ (h2 ⊗ h2))

= (h1 h2)⊗ (h1 h2),

which proves that h1 h2 ∈ G(H).
Given h ∈ G(H),

h SH(h) = mH(h⊗ SH(h)) = mH(IdH ⊗ SH)(h⊗ h) =
= mH(IdH ⊗ SH)∆H(h)
= εH(h) 1H = 1H

,

and similarly, σH(h) h = 1H. So it is enough to prove that SH(h) ∈ G(H). We have
that h SH(h) = 1H, so

1H ⊗ 1H = ∆H(mH(IdH ⊗ SH)(h⊗ h))
= mH⊗H(∆H(h)⊗ ∆H(SH(h)))
= mH⊗H((h⊗ h)⊗ ∆H(SH(h))) = (h⊗ h)∆H(SH(h)).

By the uniqueness of the inverse in the algebra H ⊗ H, ∆H(SH(h)) = SH(h)⊗
SH(h), so SH(h) ∈ G(H) as we wanted.

From Corollary 1.2.19 it also follows that the grouplike elements of R-group alge-
bras R[G] with G finite form an R-basis. Under the assumption that R is an integral
domain, they are the only finitely generated and free R-Hopf algebras with this be-
haviour.

Corollary 1.2.21. Suppose that R is an integral domain and let H be a finitely generated and
free R-Hopf algebra admitting an R-basis G formed by grouplike elements. Then G = G(H)
and H = R[G].

Proof. By hypothesis, G ⊆ G(H) and G is an R-basis of H. We know from Theorem
1.2.18 that G(H) is R-linearly independent, so necessarily G = G(H). In particular,
G is a group, so it makes sense to consider the R-group algebra R[G]. Since G is
an R-basis of H, we can regard H as the R-span of the elements of G. Moreover,
multiplication is closed for elements of N, so H = R[G] follows.

2.7 Duality

Recall that the dual of an R-module M, denoted M∗, is the set

HomR(M, R) = { f : M −→ R | f R-linear}.
Note that HomR(M, R) becomes also an R-module when it is endowed with point-
wise multiplication by R. Moreover, an R-linear map φ : M −→ M′ gives rise to a
map φ∗ : M′∗ −→ M∗ defined by φ∗(g)(m) = g(φ(m)), where m ∈ M and g ∈ M′∗.
Thus, we have a contravariant functor at the category of R-modules, which we call
the duality functor.
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2.7.1 Finite R-modules and projective coordinate sytems

If R is a field and M is a finite dimensional R-vector space, then it is well known
that for every R-basis {mi}n

i=1 of M there is an R-basis { fi}n
i=1 of M∗, called the

dual basis, such that fi(mj) = δij for every 1 ≤ i, j ≤ n, where δij is the Kronecker
delta. However, we want to keep a broader perspective, since it is often useful to
consider dual modules over rings. The analogue over rings to finite dimensional
vector spaces over fields are finitely generated and projective modules. We will
refer to such modules as finite. Namely:

Definition 1.2.22. Let M be an R-module.

1. We say that M is finitely generated if there is a finite subset {mi}n
i=1 ⊂ M such that

M = ∑n
i=1 Rmi.

2. We say that M is projective if it is a direct summand of a free R-module.

3. We say that M is finite if it is finitely generated and projective.

The analogy between finite dimensional vector spaces and finite modules lies in
the following result:

Proposition 1.2.23. An R-module M is finite if and only if there are n ∈ Z≥1 and elements
m1, . . . , mn ∈ M, f1, . . . , fn ∈ M∗ such that for each m ∈ M we have

m =
n

∑
i=1

fi(m)mi.

Definition 1.2.24. Let M be a finite R-module. A set {mi, fi}n
i=1 as in Proposition 1.2.23

is called a projective coordinate system for M.

When R is a field, finite R-modules are actually finite-dimensional R-vector spaces,
and the union of a basis together with its dual is a projective coordinate system.

Remark 1.2.25. Free modules of finite rank are finite, but the converse in general
does not hold. The existence of a projective coordinate system is coherent with this
fact, because the expression of m with respect to the elements mi may not be unique.

Remark 1.2.26. If {mi, fi}n
i=1 is a projective coordinate system for a finite R-module

M, we can also write elements of M∗ with respect to the fi. Indeed, given m ∈ M,
we know that m = ∑n

i=1 fi(m)mi. Applying f at both sides, we obtain f (m) =
∑n

i=1 f (mi) fi(m). Since m is arbitrary, this means that

f =
n

∑
i=1

f (mi) fi.

Proposition 1.2.27. If M is a finite R-module, then so is M∗. Moreover, there is a canonical
isomorphism M ∼= M∗∗ as R-modules.

Proof. Suppose that M is a finite R-module. Then M is a direct summand of a free
R-module of finite rank n, that is, there is an R-module N such that Rn = M ⊕ N.
Now, applying the duality functor, we have that Rn = M∗ ⊕ N∗, so M∗ is finitely
generated and projective.
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Let us define

η : M −→ M∗∗,
m −→ η(m) : M∗ → R, f 7→ f (m),

which is clearly a canonical morphism of R-modules. Let us prove that it is bijective.
Since M is finite, it admits a projective coordinate system {hi, fi}n

i=1. Let us consider
the map

µ : M∗∗ −→ M,
φ 7−→ ∑n

i=1 φ( fi)mi.

This is clearly R-linear. Now, for every φ ∈ M∗∗ and f ∈ M∗,

η ◦ µ(φ)( f ) = f (µ(φ)) = f
( n

∑
i=1

φ( fi)mi

)
= φ

( n

∑
i=1

f (mi) fi

)
= φ( f ),

the last equality due to Remark 1.2.26. On the other hand, given m ∈ M and f ∈ M∗,

µ ◦ η(m) =
n

∑
i=1

η(m)( fi)mi =
n

∑
i=1

fi(m)mi = m.

Remark 1.2.28. The isomorphism η being canonical means that its definition does
not depend on any choice; we can say that it is written the same for any finite R-
module M. In particular, if M is free of finite rank, the definition of η does not
depend on the choice of bases. In this case, we have that M is isomorphic as an
R-module with M∗, because they have the same rank. However, this isomorphism
is not canonical, in the sense that it depends on the choice of bases: if we change
bases, the definition of the isomorphism also changes.

After Proposition 1.2.27, we often identify H = H∗∗ by identifying any element
h ∈ H with its image η(h) ∈ H∗∗.

Corollary 1.2.29. Let M be a finite R-module. If {hi, fi}n
i=1 is a projective coordinate

system for M, then { fi, hi}n
i=1 is a projective coordinate system for M∗.

When we take m ∈ M and f ∈ M∗, f (m) stands for the map f evaluated at
the element m. But identifying m with its image in M∗∗, f (m) coincides with m( f ),
which means the map m : M∗ −→ M∗ evaluated at the element f ∈ M∗. In the
contexts where both expressions arise, we will unify these two points of view by
using the map

⟨·, ·⟩ : M∗ ⊗M −→ R, ⟨ f , h⟩ = f (h).

Under this convention,

m =
n

∑
i=1
⟨ fi, m⟩mi, m ∈ M,

f =
n

∑
i=1
⟨ f , mi⟩ fi, f ∈ M∗.

Let us study how the duality functor behaves with respect to the tensor product.
Namely, for two R-modules M and N, we are interested in the relation between
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M∗⊗ N∗ and (M⊗ N)∗. There is an important remark: if f ∈ M∗ and g ∈ N∗, f ⊗ g
can stand for the tensor product of f and g, which is an element of M∗ ⊗ N∗, or the
R-linear map M ⊗ N −→ R defined by m ⊗ n 7→ f (m)g(n), which is an element
of (M⊗ N)∗. However, both objects can be identified, as by the universal property
of the tensor product, given f and g there is a unique R-linear map as above (see
[Und15, Proposition 1.1.7]). Actually, we have been using implicitly this fact each
time we considered a tensor product of R-linear maps. Now, let Φ : M∗ ⊗ N∗ −→
(M ⊗ N)∗ be the map defined by Φ( f ⊗ g)(m⊗ n) = f (m)g(n) (and extended by
R-linearity), i.e, it carries the first interpretation of f ⊗ g to the second one.

Proposition 1.2.30. Let M and N be R-modules. Let Φ : M∗⊗N∗ −→ (M⊗N)∗ defined
by

Φ( f ⊗ g)(m⊗ n) = f (m)g(n), f ∈ M∗, g ∈ N∗, m ∈ M, n ∈ N

and extended by R-linearity.

1. If R is an integral domain, Φ is injective.

2. If either M or N is finite as an R-module, then Φ is bijective.

Proof. 1. Let f ⊗ g ∈ Ker(Φ), so f (m)g(n) = 0 for all m ∈ M and all n ∈ N. If
f = 0, we have finished. Otherwise, if f ̸= 0, there is some m ∈ M such that
f (m) ̸= 0. Since R is an integral domain, g(n) = 0 for all n ∈ N, so g = 0.
Then f = 0 or g = 0, proving that f ⊗ g = 0.

2. Suppose that M is finite as an R-module and pick a projective coordinate sys-
tem {mi, fi}n

i=1 for M. Let Ψ : (M⊗ N)∗ −→ M∗ ⊗ N∗ be the map defined by
Ψ(φ) = ∑n

i=1 fi ⊗ φ(mi ⊗−). It is straightforward to check the R-linearity of
Ψ. We prove that it is the inverse of Φ, from which it will follow the statement.
Given f ∈ M∗ and g ∈ N∗,

Ψ ◦Φ( f ⊗ g) =
n

∑
i=1

fi ⊗Φ( f ⊗ g)(mi ⊗−)

=
n

∑
i=1

fi ⊗ ⟨ f , mi⟩g

=
n

∑
i=1
⟨ f , mi⟩ fi ⊗ g

= f ⊗ g,

where the last equality follows from Remark 1.2.26. Conversely, given φ ∈
(M⊗ N)∗, m ∈ M and n ∈ N,

Φ ◦Ψ(φ)(m⊗ n) =
n

∑
i=1
⟨ fi, m⟩φ(mi ⊗ n)

= φ
( n

∑
i=1
⟨ fi, m⟩mi ⊗ n

)
= φ(m⊗ n).

Since m and n are arbitrary, it follows that Φ ◦Ψ(φ) = φ.
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In particular, Φ is bijective when R is a field and M, N are finite-dimensional
R-vector spaces.

2.7.2 Duals of Hopf algebras

Let us apply the notions related with duality to the context of Hopf algebras.
Looking at Definition 1.2.1, one can regard the notions of algebra and coalgebra

as duals: the diagram at 2a for the associative property is obtained from reversing
arrows at the diagram 3a for the coassociative property. The same phenomenon can
be observed with the diagrams 2b and 3b for the unit and counit properties respec-
tively. This intuition is materialized in the result that the dual of an R-coalgebra is
an R-algebra.

Proposition 1.2.31 ([Und15], Proposition 1.3.1). If C is an R-coalgebra, then C∗ is an
R-algebra with multiplication map mC∗ : C∗ ⊗ C∗ −→ C∗ defined by

mC∗( f ⊗ g) := ( f ⊗ g) ◦ ∆C, f , g ∈ C∗

and unit map uC∗ : R −→ C∗ given by

uC∗(r)(c) = rεC(c), r ∈ R, c ∈ C

Proof. Let us prove that mC∗ satisfies the associative property. For f , g, h ∈ C∗ and
c ∈ C, we have:

mC∗ ◦ (IdC∗ ⊗mC∗)( f ⊗ g⊗ h)(c) = mC∗( f ⊗ ∆C∗(g⊗ h))(c)
= ( f ⊗ ∆C∗(g⊗ h)) ◦ ∆C(c)

= ∑
(c)

f (c(1))⊗ ∆C∗(g⊗ h))(c(2))

= ∑
(c)

f (c(1))⊗ ((g⊗ h) ◦ ∆C(c(2)))

= ∑
(c)

f (c(1))⊗ g(c(2))⊗ h(c(3)).

Likewise,

mC∗ ◦ (mC∗ ⊗ IdC∗)( f ⊗ g⊗ h)(c) = mC∗(∆C∗( f ⊗ g)⊗ h)(c)
= (∆C∗( f ⊗ g)⊗ h) ◦ ∆C(c)

= ∑
(c)

∆C∗( f ⊗ g))(c(1))⊗ h(c(2))

= ∑
(c)
(( f ⊗ g) ◦ ∆C(c(1)))⊗ h(c(2))

= ∑
(c)

f (c(1))⊗ g(c(2))⊗ h(c(3)).

Since we have arrived in the same expression, the first members at each chain of
equalities coincide, which proves that the associative property holds.
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As for the unit property, given r ∈ R, f ∈ C∗ and c ∈ C, we have

mC∗ ◦ (IdC∗ ⊗ uC∗)( f ⊗ r)(c) = mC∗( f ⊗ uC∗(r))(c)
= ( f ⊗ uC∗(r)) ◦ ∆C(c)

= ∑
(c)

f (c(1))rεC(c(2))

= r ∑
(c)

f (c(1))εC(c(2))

= r ∑
(c)

f (εC(c(2))c(1))

= r f
(

∑
(c)

εC(c(2))c(1)
)

= r f (c).

In the same way, we prove that mC∗ ◦ (uC∗ ⊗ IdC∗)(r⊗ f )(c) = r f (c) for every r ∈ R,
f ∈ C∗ and c ∈ C. Hence the unit property is satisfied. This finishes the proof.

Remark 1.2.32. If we appy the duality functor at the counit map εC we obtain the
unit map uC∗ at Proposition 1.2.31. Indeed, ε∗C : R∗ −→ C∗ is defined by ε∗C( f )(c) =
f ◦ εC(c). Note that R∗ = EndR(R), whose only elements f ∈ R∗ are homothe-
cies with factor f (1R), and then R∗ identifies trivially with R by f 7→ f (1). Then
ε∗C : R −→ C∗ is defined by ε∗C(r)(c) = rεC(c) = uC∗(r)(c). Sine r and c are arbitrary,
ε∗C = uC∗ .

As for the relation between mC∗ and the dual ∆∗C of the comultiplication map
∆C, the matter is more subtle, as the map C∗ ⊗ C∗ −→ (C ⊗ C)∗ need not be injec-
tive (even though Proposition 1.2.31 is still valid in that case). However, following
Proposition 1.2.30, there is injectivity when R is an integral domain or C is finite
as an R-module. In that case, applying the duality functor to the comultiplication
∆C : C −→ C⊗ C yields the map

∆∗C : (C⊗ C)∗ −→ C∗

defined as ∆∗C(φ) = φ ◦ ∆C, and we can consider the restriction ∆∗C |C∗⊗C∗ , which is
just the multiplication map mC∗ .

Remark 1.2.33. Let C be an R-coalgebra and consider the R-algebra structure on C∗

from Proposition 1.2.31. Then, the identity element for the multiplication on C∗ is
the counit map εC of C. Indeed, given f ∈ C∗ and c ∈ C, we have

mC∗( f ⊗ εC)(c) = ( f ⊗ εC)∆C(c)

= ∑
(c)

εC(c(2)) f (c(1))

= f
(

∑
(c)

εC(c(2))c(1)
)

= f (c),

so mC∗( f ⊗ εC) = f . Similarly, one proves that mC∗(εC ⊗ f ) = f .
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After Proposition 1.2.31, one may expect that if A is an R-algebra, then A∗ is an
R-coalgebra. However, this is not always the case (see [Und15, Example 1.3.2] for a
counterexample). Instead, we will that it holds when A is finite as an R-module (if
R is a field, this is just assuming that A is of finite dimension).

Let us think on what happens when one applies the duality functor to the mul-
tiplication map mA : A⊗ A −→ A. We obtain a map m∗A : A∗ −→ (A⊗ A)∗. Again
by Proposition 1.2.30, we have that (A ⊗ A)∗ ∼= A∗ ⊗ A∗ because A is finite, and
identifying both, we obtain a map m∗A : A∗ −→ A∗ ⊗ A∗. For f ∈ A∗, we can con-
sider m∗A( f ) as an element of (A ⊗ A)∗, and then, for a, b ∈ A, m∗A( f )(a ⊗ b) =
f (mA(a⊗ b)). Therefore, thanks to the hypothesis that A is finite as an R-module,
the image of m∗A lies in A∗ ⊗ A∗.

On the other hand, if one dualizes the unit map uA : R −→ A, we obtain a map
u∗A : A∗ −→ R∗ defined by uA∗( f )(r) = f (uA(r)). Identifying R∗ = R, we obtain
that u∗A : A∗ −→ R is defined by uA∗( f ) = f (1A).

In the following we shall see that the maps m∗A and u∗A serve as comultiplication
and counit maps for A∗, respectively.

Proposition 1.2.34 ([Und15], Proposition 1.3.9). If A is an R-algebra that is finite as an
R-module, then A∗ is an R-coalgebra with comultiplication map ∆A∗ : A∗ −→ A∗ ⊗ A∗

defined as
∆A∗( f )(a⊗ b) = f ◦mA(a⊗ b), a, b ∈ A,

and counit map εA∗ : A∗ −→ R given by

εA∗( f ) = f (1A).

Proof. Let us check the coassociative property. For f ∈ A∗ and a, b, c ∈ A, we claim
that

(IdA∗ ⊗ ∆A∗) ◦ ∆A∗( f ) = ∆A∗( f ) ◦ (IdA ⊗mA).

Indeed, let us write

∆A∗( f ) =
s

∑
i=1

αi ⊗ βi, αi, βi ∈ A∗

(note that we are not allowed to use Sweedler’s notation as long as we do not know
that ∆A∗ is a comultiplication). Then, given a, b, c ∈ A

(IdA∗ ⊗ ∆A∗) ◦ ∆A∗( f )(a⊗ b⊗ c) =
s

∑
i=1

αi ⊗ ∆A∗(βi)(a⊗ b⊗ c)

=
s

∑
i=1
⟨αi, a⟩βi ◦mA(b⊗ c)

=
s

∑
i=1

(αi ⊗ βi)(IdA ⊗mA)(a⊗ b⊗ c)

= ∆A∗( f ) ◦ (IdA ⊗mA)(a⊗ b⊗ c),

as claimed. Hence

(IdA∗ ⊗ ∆A∗) ◦ ∆A∗( f )(a⊗ b⊗ c) = ∆A∗( f ) ◦ (IdA ⊗mA)(a⊗ b⊗ c)
= f ◦mA ◦ (IdA ⊗mA)(a⊗ b⊗ c)
= f ◦mA(a⊗ (bc))
= a(bc).
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Likewise, it is proved that

(∆A∗ ⊗ IdA∗) ◦ ∆A∗( f )(a⊗ b⊗ c) = (ab)c.

Since A is an R-algebra, the associative property gives that (ab)c = a(bc), implying
coassociativity.

Finally, we check the counit property. Given f ∈ A∗, r ∈ R and a ∈ A, we have

(εA∗ ⊗ IdA∗) ◦ ∆A∗( f )(r⊗ a) = ∆A∗(uA ⊗ IdA)(r⊗ a)
= f ◦mA(uA ⊗ IdA)(r⊗ a)
= f (mA(r1A ⊗ a)
= f (ra)
= r f (a)
= (1⊗ f )(r⊗ a),

so (εA∗ ⊗ IdA∗)( f ) = 1⊗ f , and similarly, (IdA∗ ⊗ εA∗)( f ) = f ⊗ 1.

In the end, we see that the category of R-Hopf algebras is invariant under the
duality functor.

Proposition 1.2.35. Let H be a finite R-Hopf algebra. Then H∗ is an R-Hopf algebra.

Proof. We follow the proof at [Und15, Proposition 3.1.12].
By Proposition 1.2.31, H∗ is an R-algebra with multiplication mH∗ := ∆∗H |H∗⊗H∗

and unit uH∗ := ε∗H. On the other hand, since H is finite as an R-module, Proposition
1.2.34 gives that H∗ is an R-coalgebra with comultiplication ∆H∗( f ) = f ◦ mH and
counit εH∗( f ) = f (1H). Now, it is straightforward to check that ∆H∗ and εH∗ are
ring homomorphisms, proving that H∗ is an R-bialgebra. Let us consider the dual
S∗H : H∗ −→ H∗ of the antipode SH : H −→ H. Given f ∈ H∗ and a ∈ H, we have

(mH∗ ◦ (IdH∗ ⊗ S∗H) ◦ ∆H∗( f ))(a) = (IdH∗ ⊗ S∗H)(∆H∗( f )(∆H(a)))
= ∆H∗( f )((IdH ⊗ SH) ◦ ∆H(a))
= f (mH ◦ (IdH ⊗ SH) ◦ ∆H(a))
= f (εH(a)1H)

= εH(a) f (1H)

= εH∗( f )εH(a)
= εH∗( f )1H∗(a).

Likewise,
(mH∗ ◦ (S∗H ⊗ IdH∗) ◦ ∆H∗( f ))(a) = εH∗( f )1H∗(a).

Then SH∗ := S∗H works as an antipode and H∗ is an R-Hopf algebra.

Proposition 1.2.36. Let H be an R-Hopf algebra which is finite as an R-module. Then H∗∗

is an R-Hopf algebra and H ∼= H∗∗ as R-Hopf algebras.

Proof. That H∗∗ is an R-Hopf algebra follows directly from Proposition 1.2.35. On
the other hand, from the proof of Proposition 1.2.27, we know that there is an iso-
morphism η : H −→ H∗∗ of R-modules defined by η(h)( f ) = f (h). It is enough to
check that this is an isomorphism of R-Hopf algebras.
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• Given h, h′ ∈ H and f ∈ H∗,

(mH∗∗(η ⊗ η)(h⊗ h′))( f ) = (η(h)⊗ η(h′))∆H∗( f )

= (η(h)⊗ η(h′))
(

∑
( f )

f(1) ⊗ f(2)
)

= ∑
( f )

η(h)( f(1))η(h
′)( f(2))

= ∑
( f )

f(1)(h) f(2)(h
′)

= ∑
( f )

f(1) ⊗ f(2)(h⊗ h′)

= ∆H∗( f )(h⊗ h′)
= f ◦mH(h⊗ h′)
= f (mH(h⊗ h′))
= η(mH(h⊗ h′))( f ).

Then mH∗∗ ◦ (η ⊗ η)(h⊗ h′) = η ◦mH(h⊗ h′) for every h⊗ h′, whence mH∗∗ ◦
(η ⊗ η) = η ◦mH.

• Given r ∈ R and f ∈ H∗,

η ◦ uH(r)( f ) = rη(1H)( f )
= r f (1H)

= rεH∗( f )
= uH∗∗(r)( f ).

Then η ◦ uH = uH∗∗ .

• Note that since H∗∗ ⊂ (H∗ ⊗ H∗)∗, elements of H∗∗ can be seen as R-linear
maps H∗ ⊗ H∗ −→ R. Now, given h ∈ H and f , g ∈ H∗,

(∆H∗∗ ◦ η(h))( f ⊗ g) = η(h) ◦mH∗( f ⊗ g)
= η(h)(( f ⊗ g) ◦ ∆H)

= ( f ⊗ g)∆H(h)

= ∑
(h)

f (h(1))⊗ g(h(2))

= ∑
(h)

η(h(1))( f )⊗ η(h(2))(g)

= (η ⊗ η)∆H(h)( f ⊗ g).

It follows that ∆H∗∗ ◦ η = (η ⊗ η)∆H.

• Given h ∈ H,

εH∗∗ ◦ η(h) = η(h)(1H∗) = 1H∗(h) = εH(h).

Then, εH∗∗ ◦ η = εH.
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• Given h ∈ H and f ∈ H∗,

SH∗∗ ◦ η(h) = η(h) ◦ SH∗( f ) = SH∗( f )(h) = f ◦ SH(h) = η ◦ SH(h)( f ).

Then SH∗∗ ◦ η = SH.

Corollary 1.2.37. Let H be a finite R-module. Then H is an R-Hopf algebra if and only if
so is H∗.
Proof. The left-to-right implication is Proposition 1.2.35. Conversely, assume that
H∗ is an R-Hopf algebra. Again by Proposition 1.2.35, we have that H∗∗ is an R-
Hopf algebra. Now, we induce on H an R-Hopf algebra structure by means of the
isomorphism of R-modules η : H −→ H∗∗. Namely, we define on H the following
operations:

• Multiplication map: mH := η−1 ◦mH∗∗ ◦ (η ⊗ η).

• Unit map: uH := η−1 ◦ ηH∗∗ .

• Comultiplication map: ∆H := (η−1 ⊗ η−1) ◦ ∆H∗∗ ◦ η.

• Counit map: εH := εH∗∗ ◦ η.

• Coinverse map: SH := η−1 ◦ SH∗∗ ◦ η.

Since the previous definitions are equivalent to the axioms for a Hopf algebra
homomorphism (see Definition 1.2.9), it is automatic that H is an R-Hopf algebra
with these operations. But by Proposition 1.2.36, this Hopf algebra structure on H is
the one such that its bidual is the one at H∗∗, and hence its dual is the one at H∗.

2.8 Modules and comodules

Let us fix an R-Hopf algebra H. Suppose that we have an R-module A which in
addition is an H-module. This means that we have an external product of H on A,
or equivalently, an action H × A −→ A, that preserves the additive structure of S.
If in addition we want H to act R-linearly on A, that is, the action is preserved by
external multiplication by R, we should impose that the map above is R-bilinear.
Equivalently, we can think of it as an R-linear map H ⊗ A −→ A, which will be our
usual way to consider R-linear actions.

We need to consider R-linear actions of R-Hopf algebras that are in addition well
behaved with respect to the Hopf algebra operations. This leads to the notion of left
H-module.

Definition 1.2.38. Let A be an R-module and let H be an R-Hopf algebra. We say that A
is a left H-module if there is an R-linear map α : H ⊗ A −→ A such that:

1. (Associative property) α ◦ (IdH ⊗ α) = α ◦ (mH ⊗ IdA), that is, the following
diagram is commutative:

H ⊗ H ⊗ A

IdH⊗α

��

mH⊗IdA // H ⊗ A

α

��
H ⊗ A α // H
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2. (Unit property) α ◦ (uH ⊗ IdA)(r⊗ a) = ra for every r ∈ R and a ∈ A, that is, the
following diagram is commutative:

R⊗ A

uH⊗IdA

��

s

!!
H ⊗ A α // A

where s : R⊗ A −→ A is the R-linear action of R on A induced by uA.

We will also say that A is a left H-module via α.

Remark 1.2.39. The notion of left H-module at Definition 1.2.38 is not the usual
notion of left module over a ring, that is, an abelian group receiving the external
product of a ring of scalars that preserves addition. The mere existence of an R-
linear map α : H ⊗ A −→ A yields that A is a left module over the underlying ring
structure of H in that sense. Instead, our ground ring is required to be an R-Hopf
algebra and we impose that the associative and unit properties at Definition 1.2.38
are satisfied. In fact, there is no need of the coalgebra structure and the antipode, so
we can actually define the notion of left S-module, for an R-algebra S, in the same
way.

If A is a left H-module, we usually refer to α : H⊗ A −→ A as an R-linear action
or module map. We may use the label αA for the action of A when other left H-
modules are present in the context. Given h ∈ H and a ∈ A, we will usually denote
h · a := α(h⊗ a). Under this notation, the associative property means that

(hh′) · a = h · (h′ · a), h, h′ ∈ H, a ∈ A,

while the unit property translates into

(r1H) · a = ra, r ∈ R, a ∈ A.

Example 1.2.40. 1. The ground ring R has itself left H-module structure by means
of

h · r = εH(h)r, h ∈ H, r ∈ R.

2. Let A be a left H-module. Then, A⊗ A is also a left H-module with respect to

h · (a⊗ b) := ∑
(h)

(h(1) · a)⊗ (h(2) · b), h ∈ H, a, b ∈ A.

3. An R-Hopf algebra H is a left H-module with the multiplication mH as R-linear
action.

Definition 1.2.41. Let H be an R-Hopf algebra and let A and A′ be left H-modules. We
say that an R-module homomorphism f : A −→ A′ is a left H-module homomorphism if
f ◦ αA = αA′ ◦ (IdH ⊗ f ), that is, the following diagram commutes:

A
f

// A′

H ⊗ A

αA

OO

IdH⊗ f
// H ⊗ A′

αA′

OO
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While in the notion of left H-module we have an action consisting on an R-linear
map α : H ⊗ A −→ A compatible with the Hopf algebra operations, we can dualize
this notion to the one of right H-comodule.

Definition 1.2.42. Let A be an R-module. We say that A is a right H-comodule if there
is an R-module homomorphism β : A −→ A⊗ H such that:

1. (Coassociative property) (β⊗ IdH) ◦ β = (IdA ⊗ ∆H) ◦ β, that is, the following
diagram is commutative:

A⊗ H ⊗ H A⊗ H
β⊗IdHoo

A⊗ H

IdA⊗∆H

OO

A
β

oo

β

OO

2. (Counit property) (IdA ⊗ εH) ◦ β is the trivial R-linear map ι : A −→ A⊗ R, that
is, the following diagram is commutative:

A⊗ H

IdA⊗εH

��

A
β

oo

ι

}}
A⊗ R

We will also say that A is a right H-comodule via β.

Remark 1.2.43. As in the case of left H-modules, for the notion of right H-comodule,
the requirement of H to be an R-Hopf algebra is not needed, so that right C-comodules
are defined in the same way for an R-coalgebra C.

We will usually call the map β : A −→ A⊗ H an R-linear coaction or comodule
map. We have also a Sweedler notation for this map. Namely, if a ∈ A, we will write

β(a) = ∑
(a)

a(0) ⊗ a(1), a(0) ∈ A, a(1) ∈ H. (1.4)

Again, when we are working also with other right H-comodules, we may denote
βA for the comodule map of A.

Example 1.2.44. 1. The ring R can be seen as a right H-comodule with coaction

βR(r) = r⊗ uH(1R), r ∈ R.

2. If A is a right H-comodule, then so is A⊗ A with coaction

βA⊗A(a⊗ b) = ∑
(a),(b)

a(0) ⊗ b(0) ⊗mH(a(1) ⊗ b(1)), a, b ∈ A.
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3. An R-Hopf algebra H is a right H-comodule with the comultiplication ∆H as coaction.

Definition 1.2.45. Let A and A′ be right H-comodules. We say that an R-linear map
f : A −→ A′ is a right H-comodule homomorphism if βA′ ◦ f = ( f ⊗ IdH) ◦ βA, that is,
the following diagram commutes:

A

βA

��

f
// A′

βA′

��
H ⊗ A

IdH⊗ f
// H ⊗ A′

Now, suppose that the R-Hopf algebra H is finite. Recall that the dual H∗ is also
an R-Hopf algebra which is finite as an R-module (in short, we will refer to H as a
finite R-Hopf algebra). If we fix a projective coordinate system for H, we can induce
a right H∗-comodule structure from a left H-module structure and viceversa, and
both operations are inverse to each other.

Proposition 1.2.46. Let H be a finite R-Hopf algebra and let {hi, fi}n
i=1 be a projective

coordinate system for H.

1. If A is a right H-comodule, then it is a left H∗-module with action H∗ ⊗ A −→ A
defined by

f · a := ∑
(a)

a(0) ⟨ f , a(1)⟩, f ∈ H∗, a ∈ A.

2. If A is a left H-module, then it is a right H∗-comodule with coaction given by the map

β : A −→ A⊗ H∗,
a 7−→ ∑n

i=1(hi · a)⊗ fi.

Proof. 1. We prove the validity of the conditions 1 and 2 at Definition 1.2.38.

We first check 1. The coassociative property for β means that

∑
(a)

β(a(0))⊗ a(1) = ∑
(a)

a(0) ⊗ ∆H(a(1)), a(0) ∈ A, a(1) ∈ H.

Writing down the Sweedler notation for β(a(0)), we have

∑
(a)

a(0) ⊗ a(1) ⊗ a(2) = ∑
(a)

a(0) ⊗ ∆H(a(1)).

37



Given f , f ′ ∈ H∗ and a ∈ A, we obtain

( f f ′) · a = ∑
(a)

a(0)⟨ f f ′, a(1)⟩

= ∑
(a)

a(0)mH∗( f ⊗ f ′)(a(1))

= ∑
(a)

a(0)( f ⊗ f ′) ◦ ∆H(a(1))

= ∑
(a)

a(0)⟨ f , a(1)⟩⟨ f ′, a(2)⟩

= f ·
(

∑
(a)

a(0)⟨ f ′, a(1)⟩
)

= f · ( f ′ · a),

as we wanted.

Next, we check 2. For r ∈ R and a ∈ A, we have

(r1H∗) · a = ∑
(a)

a(0)⟨r1H∗ , a(1)⟩ = r ∑
(a)

a(0)εH(a(1)) = a.

2. We shall check that the conditions 1 and 2 at Definition 1.2.42 are satisfied.

Given a ∈ A, we have that

(β⊗ IdH∗) ◦ β(a) = (β⊗ 1)

(
n

∑
i=1

(hi · a)⊗ fi

)
=

n

∑
i,j=1

(hj · (hi · a))⊗ f j ⊗ fi,

(IdA⊗∆H∗) ◦ β(a) = (1⊗∆H∗)

(
n

∑
i=1

(hi · a)⊗ fi

)
=

n

∑
i=1

(hi · a)⊗

∑
( fi)

fi(1) ⊗ fi(2)

 .

Next, we evaluate at an element h⊗ h′ ∈ H ⊗ H, obtaining that

(β⊗ IdH∗) ◦ β(a)(h⊗ h′) =
n

∑
i,j=1

(hj · (hi · a)) ⟨ f j ⊗ fi, h⊗ h′⟩

=
n

∑
i,j=1

(hj · (hi · a)) ⟨ f j, h⟩ ⟨ fi, h′⟩

=
n

∑
j=1
⟨ f j, h′⟩ hj ·

(
n

∑
i=1
⟨ fi, h′⟩ (hi · a)

)
= h · (h′ · a),
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(IdA ⊗ ∆H∗) ◦ β(a)(h⊗ h′) =
n

∑
i=1

(hi · a)

∑
( fi)

⟨ fi(1) ⊗ fi(2), h⊗ h′⟩


=

n

∑
i=1

(hi · a)

∑
( fi)

⟨ fi(1), h⟩ ⟨ fi(2), h′⟩


=

n

∑
i=1

(hi · a)∆H∗( fi)(h⊗ h′)

=
n

∑
i=1

(hi · a) ⟨ fi, h h′⟩

= (h h′) · a.

Since A is a left H-module, we have that h · (h′ · a) = (h h′) · a, so we conclude
that (β⊗ IdH∗) ◦ β = (IdA ⊗ ∆H∗) ◦ β.

Finally, for a ∈ A we have

(IdA ⊗ εH∗) ◦ β(a) =
n

∑
i=1

hi · a⊗ εH∗( fi)

=
n

∑
i=1

hi · a⊗ fi(1H)

=
( n

∑
i=1

fi(1H)hi

)
· a⊗ 1R

= (1H · a)⊗ 1R

= a⊗ 1R

(1.5)

We check that the notions left H-module and right H-comodule are dual to each
other, in the sense that left H-module is equivalent to right H∗-comodule.

Proposition 1.2.47. Let H be a finite R-Hopf algebra and let A be an R-module. Then, A
is a left H-module if and only if it is a right H∗-comodule. Furthermore, if it is the case, the
H-module and H∗-comodule structures on A are induced as in Proposition 1.2.46 by each
other.

Proof. The equivalence has been proved already. Let us consider the left H-module
structure H ⊗ A −→ A on A. Then, the induced right H∗-comodule structure is
given by

β(a) =
n

∑
i=1

(hi · a)⊗ fi, a ∈ A.

This coaction induces a left H-module structure given by

h(a) = ∑
(a)

a(0)⟨h, a(1)⟩.

By the definition of β,

h(a) =
n

∑
i=1

(hi · a)⟨h, fi⟩ =
(

n

∑
i=1
⟨ fi, h⟩ hi

)
· a = h · a
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for every a ∈ A, so we recover the original left H-module structure on A.
Now, we consider the right H∗-comodule structure β : A −→ A⊗ H∗ on A. The

induced left H-module structure is given by

h(a) = ∑
(a)

a(0)⟨h, a(1)⟩.

This action induces a right H∗-comodule structure given by

β′(a) =
n

∑
i=1

hi(a)⊗ fi

=
n

∑
i=1

∑
(a)

a(0)⟨hi, a(1)⟩

⊗ fi

= ∑
(a)

a(0)

(
n

∑
i=1
⟨a(1), hi⟩ ⊗ fi

)
= ∑

(a)
a(0) ⊗ a(1)

= β(a),

which is just the original right H∗-comodule structure.

2.9 Module and comodule algebras

In Section 2.8, A has been assumed to be an R-module with either module or comod-
ule structures over an R-Hopf algebra H, but no assumption on the inner structure
of A has been imposed. Now, let us suppose that A is in addition an R-algebra,
so that it is endowed with multiplication and unit maps satisfying the associative
and unit properties. If A is a left H-module (resp. right H-comodule), it admits an
R-linear action (resp. coaction) which is well behaved with respect to the algebra
(resp. coalgebra) operations of H. The notions of left module algebra and right co-
module algebra arise when some compatibility conditions are imposed between the
Hopf algebra operations and the multiplication and unit maps of A.

Definition 1.2.48. Let A be an R-algebra. We say that A is a left H-module algebra if it is
a left H-module and the following conditions are satisfied:

1. Given h ∈ H and a, b ∈ A,

h · (ab) = ∑
(h)

(h(1) · a)(h(2) · b).

2. For every h ∈ H,
h · 1A = εH(h)1A.

There is an equivalent definition in terms of the multiplication and the unit maps
of the R-algebra A.
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Proposition 1.2.49. Let H be an R-Hopf algebra and let A be an R-algebra which is also
a left H-module with action denoted by ·. Then, A is a left H-module algebra if and only if
mA : A⊗ A −→ A and uA : R −→ A are left H-module homomorphisms.

Proof. First, we check that mA is a left H-module homomorphism if and only if the
condition 1 at Definition 1.2.48 holds. Let h ∈ H, a, b ∈ A and note that

mA(h · (a⊗ b)) = mA(∑
(h)

(h(1) · a)⊗ (h(2) · b)) = ∑
(h)

(h(1) · a) (h(2) · b),

h ·mA(a⊗ a′) = h · (ab).

Thus, h · (ab) = ∑(h)(h(1) · a) (h(2) · b) if and only if mA(h(a⊗ b)) = h · mA(a⊗ b)
and we are done.

It remains to check that the uA is a left H-module homomorphism if and only if
the condition 2 at Definition 1.2.48 is satisfied. Assume that uA is a left H-module
homomorphism. Given h ∈ H,

h · 1A = h · uA(1R) = uA(h · 1R) = uA(εH(h) 1R) = εH(h) 1A.

Conversely, if 2 is satisfied, given h ∈ H and r ∈ R,

uA(h · r) = uA(εH(h)r) = εH(h) uA(r) = (h · 1A) uA(r) = h · uA(r).

Based on the equivalent definition of the left H-module algebra notion at Propo-
sition 1.2.49, we establish the one of right H-comodule algebra.

Definition 1.2.50. Let H be an R-Hopf algebra and let A be an R-algebra. We say that A
is a right H-comodule algebra if it admits right H-comodule structure and the maps mA,
uA are right H-comodule homomorphisms.

As in the module algebra case, there is an equivalent definition.

Proposition 1.2.51. Let H be an R-Hopf algebra and let A be an R-algebra. Then, A is a
right H-comodule algebra if and only if the coaction β is a homomorphism of R-algebras.

Proof. Given a, b ∈ A, we have that β ◦mA(a⊗ b) = β(a b) and

(mA ⊗ IdH) ◦ βA⊗A(a⊗ b) = (mA ⊗ IdH)

 ∑
(a),(b)

a(0) ⊗ b(0) ⊗ (a(1) b(1))


= ∑

(a),(b)
a(0) b(0) ⊗ a(1) b(1)

=

∑
(a)

a(0) ⊗ a(1)

 ∑
(b)

b(0) ⊗ b(1)


= β(a) β(b),

so mA is an homomorphism of right H-comodules if and only if β(a b) = β(a) β(b)
for every a, b ∈ A.
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On the other hand, we have that β ◦ uA(r) = β(r 1A) = r β(1A) and

(uA ⊗ IdH) ◦ βR(r) = (uA ⊗ IdH)(r⊗ uH(1R)) = uA(r)⊗ 1H = r 1A ⊗ 1H.

Thus, uA is an homomorphism of H-comodules if and only if β(1A) = 1A ⊗ 1H.
Then, A is a H-comodule algebra if and only if β(a b) = β(a) β(b) for every

a, b ∈ A and β(1A) = 1A ⊗ 1H, that is, β is a homomorphism of R-algebras.

We can complete Proposition 1.2.47 to the following.

Proposition 1.2.52. Let H be a finite R-Hopf algebra and let A be an R-algebra. Then A is
a left H-module algebra if and only if it is a right H∗-comodule algebra.

Proof. Assume that A is a right H∗-comodule algebra with coaction β : A −→ A⊗
H∗. Consider the left H-module structure on A as in Proposition 1.2.46, that is,

h · a := ∑
(a)

a(0) ⟨h, a(1)⟩, h ∈ H, a ∈ A.

By Proposition 1.2.51, β is a homomorphism of R-algebras. This means that for
every a, b ∈ A,

β(ab) = ∑
(a,b)

a(0)b(0) ⊗ a(1)b(1).

Now, given f ∈ H∗ and a, b ∈ A, we have

h · (ab) = ∑
(a,b)

a(0)b(0)⟨h, a(1)b(1)⟩

= ∑
(a,b)

a(0)b(0) ∑
( f )
⟨h(1), a(1)⟩⟨h(2), b(1)⟩

= ∑
(h)

∑
(a,b)

a(0)⟨h(1), a(1)⟩b(0)⟨h(2), b(1)⟩

= ∑
(h)

(
∑
(a)

a(0)⟨h(1), a(1)⟩
)(

∑
(b)

b(0)⟨h(2), b(1)⟩
)

= ∑
(h)

(h · a)(h · b).

On the other hand, since β(1A) = 1A ⊗ 1H∗ , for every h ∈ H we have

h · 1A = ⟨h, 1H∗⟩1A = εH(h)1A.

Suppose that A is a left H-module algebra. By Proposition 1.2.46, we have that
mA and uA are left H-module homomorphisms. We know from Proposition 1.2.47
that A is a right H∗-comodule with coaction

β(a) =
n

∑
i=1

(hi · a)⊗ fi.

Let us check that A is a right H∗-comodule algebra. By Proposition 1.2.51, it is
enough to check that β is a homomorphism of R-algebras. First, let us define a map

Φ : A⊗ H∗ −→ HomR(H, A),
a⊗ f −→ h 7→ a⟨ f , h⟩.
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This is clearly an R-linear map, and it is bijective because it has inverse

Ψ : HomR(H, A) −→ A⊗ H∗,
φ 7−→ ∑n

i=1 φ(hi)⊗ fi.

Indeed, given a⊗ f ∈ A⊗ H∗, we have

Ψ ◦Φ(a⊗ f ) =
n

∑
i=1

Φ(a⊗ f )(hi)⊗ fi

=
n

∑
i=1

a⟨ f , hi⟩ ⊗ fi

= a⊗
( n

∑
i=1
⟨ f , hi⟩ fi

)
= a⊗ f ,

and conversely, for any φ ∈ HomR(H, A) and h ∈ H,

Φ ◦Ψ(φ)(h) = Φ
( n

∑
i=1

φ(hi)⊗ fi

)
(h)

=
n

∑
i=1

φ(hi)⟨ fi, h⟩

= φ
( n

∑
i=1
⟨ fi, h⟩hi

)
= φ(h).

Since h is arbitrary, we conclude that Φ ◦Ψ(φ) = φ.
Let us check that β is a homomorphism of R-algebras. Given a, b ∈ A, we shall

prove that Φ(β(ab)) = Φ(β(a)β(b)). From the bijectivity of Φ, it will follow that
β(ab) = β(a)β(b).

First, we have

β(ab) =
n

∑
i=1

hi · (ab)⊗ fi.

Thus, given h ∈ H,

Φ(β(ab))(h) =
n

∑
i=1

hi · (ab)⟨ fi, h⟩.

Since ⟨ fi, h⟩ ∈ R,

n

∑
i=1

hi · (ab)⟨ fi, h⟩ =
( n

∑
i=1
⟨ fi, h⟩hi

)
· (ab) = h · (ab).

From this, we have that

h · (ab) = ∑
(h)

(h(1) · a)(h(2) · b)
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because A is a left H-module algebra. Now, writing elements of h with respect to
{hi, fi}n

i=1, we obtain

∑
(h)

(h(1) · a)(h(2) · b) = ∑
(h)

( n

∑
i=1
⟨ fi, h(1)⟩hi

)
· a
( n

∑
j=1
⟨ f j, h(2)⟩hj

)
· b.

Again, since the expressions in brackets belong to R, we have

∑
(h)

( n

∑
i=1
⟨ fi, h(1)⟩hi

)
· a
( n

∑
j=1
⟨ f j, h(2)⟩hj

)
· b = ∑

(h)

( n

∑
i=1

(hi · a)⟨ fi, h(1)⟩
)( n

∑
j=1

(hj · b)⟨ f j, h(2)⟩
)

= ∑
(h)

n

∑
i,j=1

(hi · a)(hj · b)⟨ fi, h(1)⟩⟨ f j, h(2)⟩

=
n

∑
i,j=1

(hi · a)(hj · b)∑
(h)
⟨ fi, h(1)⟩⟨ f j, h(2)⟩

Note that

∑
(h)
⟨ fi, h(1)⟩⟨ f j, h(2)⟩ = ( fi ⊗ f j)

(
∑
(h)

h(1) ⊗ h(2)
)

= ( fi ⊗ f j)∆H(h)

= mH∗( fi ⊗ f j)(h)

= ⟨ fi f j, h⟩.

Therefore,

n

∑
i,j=1

(hi · a)(hj · b)∑
(h)
⟨ fi, h(1)⟩⟨ f j, h(2)⟩ =

n

∑
i,j=1

(hi · a)(hj · b)⟨ fi f j, h⟩.

Since

β(a)β(b) =
n

∑
i,j=1

(hi · a)(hj · b)⊗ fi f j,

we see that
n

∑
i,j=1

(hi · a)(hj · b)⟨ fi f j, h⟩ = Φ(β(a)β(b))(h).

Going through the chain of equalities, we conclude that

Φ(β(ab))(h) = Φ(β(a)β(b))(h),

for every h ∈ H, from which the desired equality follows.

3 Exercises

3.1 Exercises on Section 1

1. Let K be a field with char(K) = 0. Let L and M be finite extensions of K and
M/K is Galois.
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(a) Prove that LM/L is Galois and that there is an embedding Gal(LM/L) ↪→
Gal(M/K), which becomes an isomorphism if L ∩M = K.

(b) Suppose that L/K is also Galois. Show that LM/K is Galois and that there
is an embedding Gal(LM/K) ↪→ Gal(L/K)×Gal(M/K), which becomes
an isomorphism if L ∩M = K.

2. Let L be the splitting field of the polynomial f (x) = x4 + 6x2 − 3 over Q.
Determine completely the lattice of intermediate fields of L/Q and the lattice
of subgroups of Gal(L/Q).

Note: L is also the splitting field of the polynomial x4 − 3x2 + 3 over Q.

3. Let L/K be a Galois extension with group G.

(a) Show that G endowed with the Krull topology is a topological group.

(b) Prove that the Krull topology on G is discrete if and only if L/K is finite.
Deduce that the fundamental theorem of Galois theory at the infinite case
is a generalization of the one for the finite case.

4. For each m ∈ Z>0, write Lm for the m-th cyclotomic field; that is, Lm := Q(ζm),
where ζm is a primitive m-th root of unity. In addition, for a prime number p,
let Lp∞ =

⋃
n∈Z>0

Lpn be the union of all the fields Lpn (which is a field because
Lpn ⊂ Lpn+1 for all n ∈ Z>0).

(a) Prove that Lm/Q is Galois and that Gal(Lm/Q) ∼= (Z/mZ)×.
Note: You do not need to prove the result that all the conjugates of ζm are
ζk

m for 1 ≤ k ≤ m and gcd(k, m) = 1.

(b) Show that for each intermediate field E of Lp∞ /Q such that E/Q is finite,
there is some n ∈ Z>0 such that E ⊆ Lpn . Deduce that if in addition E/Q

is Galois, then it is abelian.

(c) Prove that Lp∞ /Q is Galois and that Gal(Lp∞ /Q) ∼= (Zp)×, the multi-
plicative group of the ring of p-adic integers.
Note: You are allowed to use the definition of Zp as a projective limit.

3.2 Exercises on Section 2

1. Let G be a group. Prove that the R-group algebra R[G] is an R-Hopf algebra.

2. Let H and H′ be R-Hopf algebras. Prove that H ⊗ H′ is an R-Hopf algebra
with the following operations:

• Multiplication map: mH⊗H′ : (H⊗H′)⊗ (H⊗H′) −→ H⊗H′, mH⊗H′((a⊗
b)⊗ (c⊗ d)) = mH(a⊗ c)⊗mH′(b⊗ d).

• Unit map: uH⊗H′ : R −→ H ⊗ H′, uH⊗H′(r) = r1H ⊗ 1H′ .

• Comultiplication map: ∆H⊗H′ = (IdH ⊗ τ ⊗ IdH′) ◦ (∆H ⊗ ∆H′) : H ⊗
H′ −→ (H⊗ H′)⊗ (H⊗ H′), where τ : H⊗ H′ −→ H′ ⊗ H is defined by
τ(a⊗ b) = b⊗ a.

• Counit map: εH⊗H′ : H ⊗ H′ −→ R, εH⊗H′(a⊗ b) = εH(a)εH′(b).
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• Coinverse map: SH⊗H′ : H ⊗ H′ −→ H ⊗ H′, SH⊗H′(a ⊗ b) = SH(a) ⊗
SH′(b).

3. Let G and H be finite groups. Prove that R[G × H] and R[G]⊗ R[H] are iso-
morphic as R-Hopf algebras.

4. Let A be an R-algebra and let C be an R-coalgebra. Given f , g ∈ HomR(C, A),
the convolution of f and g is defined as

f ∗ g := mA ◦ ( f ⊗ g) ◦ ∆C.

Prove that (HomR(C, A), ∗) is a monoid (that is, it is associative and admits an
identity element).

Hint: It may help write down the definition of f ∗ g in terms of the Sweedler
notation for the comultiplication.

5. Let H be an R-Hopf algebra. Prove that the antipode SH is an anti-homomorphism
of R-algebras, that is, SH(ab) = SH(b)SH(a) for all a, b ∈ H and SH(1H) = 1H.

Hint: Use the uniqueness of the inverse of mH, regarded as an element of the
monoid HomR(H ⊗ H, H) with the convolution.

6. Let H and H′ be R-Hopf algebras, and let f : H −→ H′ be a homomorphism
of R-bialgebras. Prove that f is a homomorphism of R-Hopf algebras.

Hint: Use the uniqueness of the inverse of f , regarded as an element of the
monoid HomR(H, H′) with the convolution.

7. Let f : H −→ H′ be a homomorphism of R-Hopf algebras.

(a) Prove that f (G(H)) ⊆ G(H′).
(b) Show that | f (G(H))| divides gcd(|G(H)|, |G(H′)|).

8. Let H be a finite R-Hopf algebra.

(a) Show that H is a left H-module with the multiplication mH : H⊗H −→ H
as action. Write down the induced right H∗-comodule structure for H.

(b) Show that H∗ is a right H∗-comodule with the comultiplication ∆H∗ : H∗ −→
H∗⊗H∗ as coaction. Write down the induced left H-module structure for
H∗.

9. Let H be a finite R-Hopf algebra and let A be a left H-module algebra. Let
{hi, fi}n

i=1 be a projective coordinate system for H and let Ψ : HomR(H, A) −→
A⊗ H∗ be the map defined by

Ψ(φ) =
n

∑
i=1

φ(hi)⊗ fi, φ ∈ HomR(H, A).

Endow HomR(H, A) with the convolution product from Exercise 4. Prove that
for every f , g ∈ HomR(H, A),

Ψ(φ ∗ ψ) = Ψ(φ)Ψ(ψ).

Hint: Let Φ : A⊗ H∗ −→ HomR(H, A) be the inverse of Φ. Try to prove that
φ ∗ ψ = Φ(Ψ(φ)Ψ(ψ)).
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Chapter 2

Hopf-Galois theory and the
Greither-Pareigis correspondence

1 Hopf-Galois extensions and Hopf-Galois objects

In this section we will introduce Hopf-Galois structures from two viewpoints: via
module algebras, and via comodule algebras. Given a Hopf-Galois structure, there
is a method of turning sub-Hopf algebras (quotient Hopf algebras respectively) into
subalgebras of the algebra which carries a Hopf-Galois structure. This is in a way a
generalization of the classical correspondence in Galois theory of fields, but it is in a
sense weaker, as not all subalgebras are reached by this process in general. We will
soon describe this method, but for a proof of some main properties we will need
a better understanding of algebras (via Γ-sets), an so some arguments have to be
postponed

Let K be any base field. All algebras over K are assumed finite-dimensional over
K unless said otherwise; the algebras bearing a Hopf-Galois structure will be as-
sumed to be commutative. Hom groups and tensor products without subscript are
taken over K.

Let H be a K-Hopf algebra. Recall that the defining map αA : H ⊗ A −→ A of
a module algebra A makes H act on A, by the simple rule h · x = αA(h ⊗ x) for
h ∈ H, x ∈ A. The defining map βA : A −→ A⊗ H∗ looks as follows in Sweedler
notation: βA(x) = ∑(x) x(0)⊗ x(1), where x ∈ A, and the factors x(0) and x(1) indicate
elements of A and H∗ respectively (see (1.4)).

There are two standard types of canonical isomorphisms for any triple X, Y, Z of
K-vector spaces:

Hom(X⊗Y, Z) ∼= Hom(X, Hom(Y, Z)) (Hom-Tensor adjunction)

and
Hom(X, Y⊗ Z) ∼= Hom(X, Y)⊗ Z.

This gives (recall that H∗ = Hom(H, K) and A = K⊗ A):

Hom(H ⊗ A, A) ∼= Hom(A, Hom(H, A))
∼= Hom(A, Hom(H, K⊗ A))
∼= Hom(A, Hom(H, K)⊗ A)

= Hom(A, A⊗ H∗).
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The twist in the last step is necessary, not for the existence of the isomorphism, but
to make it behave, with respect to module and comodule structures.

Definition 2.1.1. Let H be a K-Hopf algebra and A a left H-module algebra. Consider the
map j : A⊗ H −→ End(A) = Hom(A, A) defined by j(x⊗ h)(y) = x · h(y). In other
words: j(x⊗ h) is the action of h on A, followed by left multiplication with the element x.
Then A is said to be an H-Hopf-Galois (or H-Galois) extension if the map j is bijective.

We remark that if j is bijective and n, m denote the K-dimensions of A and H
respectively, then we get an equality nm = dim(A⊗ H) = dim(End(A)) = n2 and
hence n = m.

The prime example is the Hopf algebra K[G], where G is any finite group, for
any g ∈ G we have ∆K[G](g) = g⊗ g, the antipode SK[G] sends g to its inverse, and
εK[G](g) = 1. Assume L/K is G-Galois. Then L becomes an H-module algebra by
defining αL(g ⊗ x) = g(x); the action of the Galois group is simply encoded as a
map K[G]⊗ L −→ L. We check that L is indeed a module algebra: let x, y ∈ L and
g ∈ G. Then g(xy) = g(x)g(y), and on the other hand

∆K[G](g)(x⊗ y) = (g⊗ g)(x⊗ y) = g(x)⊗ g(y),

which contracts to g(x)g(y) under multiplication. The condition concerning the unit
map is obviously satisfied.

Dedekind has already showed that the elements of G, considered as elements of
End(L), are linearly independent, if we make End(L) into an L-vector space, vie left
multiplication by elements of L. But this is exactly saying that the map j is injective.
So for reasons of dimension, j is bijective.

Let us discuss H∗ and the comodule-algebra structure βL : L −→ L ⊗ H∗ in
detail, to get a clear picture in this classical setting. A basis for H∗ is given by the
elements eg (g ∈ G), where eg : K[G] −→ K is extraction of the g-th coefficient:
eg(∑h∈G rhh) = rg. We calculate the structure maps. First, since every k ∈ G satisfies
∆H∗(k) = k⊗ k, we get (eg · eh)(k) = eg(k)eh(k) for all g, h, k ∈ G; this is 1 if g = h = k
and 0 otherwise. Therefore egeh is eg if g = h and 0 otherwise. Elements e with e2 = e
are commonly called idempotents.

Now for the diagonal map of the dual; it is given by ∆H∗(eg)(h ⊗ k) = eg(hk).
This is 1 if hk = g and 0 otherwise, so ∆H∗(eg) is the sum of all eh ⊗ ek such that
hk = g. We leave it to the readers to determine the augmentation and the antipode
of H∗.

The dual H∗ can be described more simply as the set of maps Maps(G, K), also
written KG; a G-tuple (rg)g∈G is simply the map on G sending g to rg. In other terms,
the tuple (rg)g∈G is ∑g rgeg, and the idempotent eg corresponds to the tuple having
exactly one 1 at position g and zeros otherwise. From this one also sees that L⊗ H∗

likewise identifies with LG (the set of maps from G to L). We may now elucidate the
comodule structure.

The general rule for getting βA from αA uses a “dual basis” {hi, ϕi}i (see Defini-
tion 1.2.24) for the pair (H, H∗), and says β(x) = ∑i m(hi ⊗ x)⊗ ϕi = ∑i hi(x)⊗ ϕi.
(Recall that the rule going the other way is even simpler). In our case we already
have a beautiful dual basis: the elements g ∈ G for H, and the idempotents eg for
H∗. Thus:

β(x) = ∑
g∈G

g(x)⊗ eg.
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If we look at the identification L⊗KG = LG, the last sum is simply the map G −→ L
taking the value g(x) at g; in other words, the tuple (g(x))g∈G.

We need another definition.

Definition 2.1.2. Let J be another K-Hopf algebra, and A be a J-comodule algebra via β =
βA : A −→ A⊗ J. We define a map γ : A⊗ A −→ A⊗ J via γ(x⊗ y) = (x⊗ 1)β(y).
(So it is identity on the lefthand tensor factor, and restricted to the righthand tensor factor of
its source, it is β.) Then A is called a right H-object if the map γ is bijective.

Let us show that in the above example, the map L −→ L ⊗ H∗ = LG gives an
H∗-Galois object. Let {x1, . . . , xn} be a K-basis of L. Injectivity of γ : L⊗ L −→ LG

means that the elements β(xi) are not only K-linearly independent, but even over L.
Let us show this. We need that the n row vectors (g(xi))g are L-linearly independent.
It is equivalent to say that the square matrix M =

(
g(xi)

)
i,g has maximal rank. But

now we look at the columns
(

g(xi)
)

i of M. They are L-independent iff the elements
g of G are L-independent considered as maps L −→ L. And this is known, again
thanks to Dedekind.

Before proceeding, let us present another important class of Hopf-Galois exten-
sions/objects.

Definition 2.1.3. Let n be a fixed positive integer; a K-algebra A is called fully n-graded
if

A =
⊕

i∈Z/nZ

Ai, dimK(Ai) = 1 ∀i

and for all i, j ∈ Z/nZ, the multiplication of A induces an isomorphism Ai⊗ Aj −→ Ai+j.
In simpler terms, if Ai = Kxi, then xixj = ui,jxi+j where ui+j ∈ K is not zero.

Example 2.1.4. Assume u ∈ K, α is a root of xn − u, and the latter polynomial is
irreducible. Put A = K(α) (a field), and Ai = Kαi.

Now let C be another cyclic group of order n, written multiplicatively, with gen-
erator c. We will show that any fully n-graded algebra A is an H-Galois extension
with H = KC and an H∗-Galois object with H∗ = (KC)∗ = K[C]. Let us begin with
the latter. The map β : A −→ A⊗ H∗ = A[C] is defined as follows: Put βx = x⊗ ci

if x ∈ Ai (one says: x is homogeneous of degree i), and extend by linearity. Coasso-
ciativity is easy: take x ∈ Ai. Then (1⊗ ∆)β(x) = x⊗ ci ⊗ ci, and β⊗ 1 applied to
β(x) = x⊗ ci gives the same. Let us also check that the induced map γ is bijective.
Take a basis xi of every Ai. Then γ maps xj ⊗ xi to xjxi ⊗ ci, and the “fully graded”
condition ensures that these elements generate all of A[C]. This makes γ surjective,
hence bijective.

Let us quickly describe the corresponding H-Galois structure on the fully n-
graded algebra A; details left to reader. Recall that H = KC has a K-basis (e0, e1, . . . en−1)
of idempotents, each ei acting on K[C] as extraction of the coefficient at ci. One can
then check that ei ∈ H acts on A as projection to the direct summand Ai. – We note
in passing that one can prove a converse: indeed A is an H∗-Galois object (or as
we will see: equivalently, an H-Galois extension) only if A is fully graded and the
structures arise exactly as described.

We will now show that our definitions of Hopf-Galois extension/object behave
well in general when we switch the side. In the concrete examples above, we checked
it or at least mentioned it.
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Proposition 2.1.5. Let H be a K-Hopf algebra, and α : H⊗ A −→ A, β : A −→ A⊗ H∗

be (co)module algebra structures that correspond to each other. Then A is an H-Galois
extension if and only if A is an H∗-Galois object.

Proof. The only real point is that the map j (attached to α) is bijective if and only if
the map γ (attached to β) is bijective. Ensuring this equivalence is a bit technical,
and we omit some details. Recall that the algebra A is assumed to be commutative.

We start by exhibiting two canonical K-linear maps. Both are isomorphisms; we
will not check this (it can be done by picking bases for example). They are:

η : A⊗ H −→ HomA(A⊗ H∗, A), η(a⊗ h)(b⊗ ϕ) = ϕ(h) · ab,

and

δ : HomK(A, A) = End(A) −→ HomA(A⊗ A, A), δ( f )(a⊗ b) = a f (b).

Recall our two maps j : A⊗ H −→ End(A) and γ : A⊗ A −→ A⊗ H∗, given by
j(a⊗ h)(b) = ah(b) and γ(a⊗ b) = (a⊗ 1) · β(b). The map γ gives rise to another
map γ∗ = HomA(γ, A) going from HomA(A ⊗ H∗, A) to HomA(A ⊗ A, A). We
consider the following diagram:

A⊗ H
j

//

η
��

End(A)

δ
��

HomA(A⊗ H∗, A)
γ∗ // HomA(A⊗ A, A).

If we can prove that this square commutes, then we are done: given that the vertical
maps are bijective, the upper horizontal map will be bijective if and only if the lower
one is.

As a preparation we calculate: γ∗( f )(a⊗ b) = f (γ(a⊗ b)) = f ((a⊗ 1) · β(b)) =
f (∑(b) ab(0) ⊗ b(1)). Now we take an element a⊗ h in the upper left hand module
and chase it two ways. We have j(a⊗ h)(b) = ah(b), so

δj(a⊗ h)(c⊗ b) = c j(h⊗ a)(b) = ca h(b).

Now for the other way round the square ( f being replaced by η(a⊗ h)):

γ∗η(a⊗ h)(c⊗ b) = η(a⊗ h)(∑
(b)

cb(0) ⊗ b(1)) = a ∑
(b)

cb(0) ⊗ h(b(1)) = ac h(b).

This concludes the argument.

Now we turn to a version of the classical Galois correspondence. For a G-Galois
extension L/K, we can associate to every subgroup U < G an intermediate field
Fix(U) = Fix(L, U) = {x ∈ L : σ(x) = x ∀σ ∈ U}, and it is known that we
obtain an inclusion-reversing bijection between the set (lattice) of all subgroups of
G and the set (lattice) of all fields between K and L (see Theorem 1.1.51). In the Hopf
setting, there will be two versions again, on the module side and on the comodule
side. It will be important to see that these two ways of viewing the correspondence
are equivalent. We say already here that in general the new correspondence will not
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be perfect - we will not get all intermediate algebras between K and A, not even if
A = L is a field.

If L/K is G-Galois, it is a H-Galois extension with H = K[G] as seen before. For
any subgroup U < G we have the sub-Hopf algebra H′ = K[U] in H, and the fixed
field E = Fix(U) can be described as

E = {x ∈ L : h(x) = ε(h)(x) ∀h ∈ H′}.

In other words, E is the subalgebra annihilated by the augmentation kernel of the
sub-Hopf algebra H′. This lends itself to a generalization. We note already here:
If J and J′ denote the duals of H and H′ respectively, then J = KG, J′ = KU, and
the induced surjective homomorphism J −→ J′ of Hopf algebras, call it g, is simply
restricting a G-tuple to an U-tuple. We will come back to this.

Definition 2.1.6. Let A be an H-Galois extension, and H′ ⊂ H an arbitrary K-sub-Hopf
algebra. The fixed algebra Fix(A, H′) = Fix(H′) is defined as the set {x ∈ A : h(x) =
ε(h)(x) ∀h ∈ H′}. Note that we use the simpler notation h(x) instead of αA(h⊗ x).

It is obvious that Fix(H′) is a subspace of A.
This construction reduces to the usual “fixed field” operation in the classical case,

as seen above.

Example 2.1.7. Let us review the fully graded situation for another example. We
take A to be a fully n-graded K-algebra, with its structure of H-Galois extension,
where H = KC, and C is cyclic of order n generated by c. If m is a divisor of n,
and C′ cyclic of order m, then there is a canonical surjective group homomorphism
C −→ C′, mapping c to c (a generator of C′). This gives a sub-Hopf algebra H′ ⊂ H,
consisting of the tuples (ri) whose i-entry ri ∈ K depends only on i modulo m, not
just modulo n. We look at elements a = ∑i ai ∈ A, where ai ∈ Ai, and we ask
when such an element is annihilated by all h − ε(h) with h ∈ H′. Let 0 ≤ k < n
not be divisible by m. Then there is an m-periodic tuple r having r0 = 0 and rk = 1.
Applying it to a, we get zero only if ak = 0. So we find that Fix(H′) consists exactly
of those a which have nothing in all degrees k that are not divisible by m; and this is
the fully n/m-graded algebra ∑0≤i<n;m|i Ai = A0 ⊕ Am ⊕ A2m ⊕ . . . .

Let us now describe the Fix construction on the comodule side, starting with a
motivating example. We will conclude this section by a proof that we get the same
outcome of the Fix construction on both sides.

Consider A = L a field Galois extension of K with group N. Then L is a J-object,
with J = KN = Maps(N, K); the map β sends x ∈ L to the tuple (σ(x))σ∈N. Let N′

be any subgroup of N. This gives a surjective homomorphism g : J −→ J′ = KN′ ,
simply by restricting tuples. We then have two maps f1, f2 : L −→ L ⊗ J = LN′ .
The first is β followed by L⊗ g, so x goes to (τ(x))τ∈N′ . The map f2 sends x ∈ L to
(x, . . . , x), that is, the N′-tuple which has all entries equal to x.

Then it is pretty obvious that f1(x) = f2(x) if and only if x is fixed under the
subgroup N′; in other words, the so-called equalizer {x ∈ L : f1(x) = f2(x)} of
the two maps f1 and f2 is the fixed field of N′ inside L. We now generalize this
construction.

Let A be a Hopf-Galois object for the Hopf algebra J, and let g : J −→ J′ be any
surjective homomorphism of K-Hopf algebras. Let u = uJ′ be the unit map of the
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algebra J′, that is, the map K −→ J′ that sends r ∈ K to r · 1J′ . (One might consider
u as an inclusion, but in the example J′ = KN′ this would be a bit unnatural as we
will see.) We define Fix(g) ⊂ A to be the equalizer of the two maps

A −→ A⊗ J −→ A⊗ J′, x 7−→ (idA ⊗ g)β(x);
A −→ A⊗ J −→ A⊗ J′, x 7−→ (idA ⊗ uε)β(x).

Let us check that this reproduces taking a fixed field, in the particular case just
discussed: Here g : KN −→ KN′ is the restriction map. The first map in the dis-
play just above specializes to the map f1. We look at uε: As u : K −→ KN′ is the
diagonal, sending x to (x, . . . , x), we get that uε: sends an N-tuple y to the N′-tuple
all of whose entries are ye (the e-entry of y). Hence the second map in the display
specializes to f2, as desired.

The proof of the following result has no particular difficulties (use the defini-
tions) and is omitted.

Proposition 2.1.8. 1. If A is an H-Hopf-Galois extension and H′ a sub-Hopf algebra of
H, then the set Fix(A) is a subalgebra of A.

2. If A is a J-Hopf-Galois object and g : J −→ J′ a surjection of Hopf algebras, then the
set Fix(g) is a subalgebra of A.

The operators Fix enjoy more properties. They are injective in the sense that
different sub-Hopf algebras (quotient Hopf-algebras) lead to different (co)fixed al-
gebras, and one can also predict the dimension of the fixed algebra. To prove these
statements, we need more technique, so this is deferred. For the moment, we “only”
prove compatibility of the Fix operators on the two sides. We consider the usual sit-
uation: A is a H-Hopf-Galois extension via α : H⊗ A −→ A, and the corresponding
structure of A as an H∗ = J-Galois object is β : A −→ A⊗ J. Let H′ be a sub-Hopf
algebra of H. Dualizing the inclusion H′ → H gives a surjective Hopf algebra map
J −→ J′ = (H′)∗, which will be denoted g.

Theorem 2.1.9. With these notations and assumptions, the fixed algebra Fix(H′) ⊂ A
agrees with the cofixed algebra Fix(g).

Proof. Recall the transition rule: if β(x) = ∑(x) x(0) ⊗ x(1) with x(1) ∈ J, then for
v ∈ H, we have u(x) = ∑(x) x(0) · x(1)(v). Let us assume x ∈ Fix(g), so ∑(x) x(0) ⊗
g(x(1)) = ∑(x) x(0) ⊗ uJε J(x(1)), where the structural maps iJ , ε J belong to J. Then
iJ(1) applied to v ∈ H is the scalar εH(v). We get for v ∈ H′ (the g may be inserted
because v is not just in H but in H′):

v(x) = ∑
(x)

x(0) · x(1)(v)

= ∑
(x)

x(0) · g(x(1))(v)

= ∑
(x)

x(0) · iJε J(x(1))(v)

= ∑
(x)

x(0) · εH(v)ε J(x(1))

= εH(v) · x,
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so x is indeed in Fix(H′).
For the other direction, assume that x is in Fix(H′). We choose dual bases (ui, hi)

(with i = 1, . . . , n) for H and J such that the following hold. h1 is the unit element of
J (that is, h1 = εH); u1 = 1H; u1, . . . , uk are a basis of H′ and all of them but u1 are in
the kernel of augmentation; and hk+1, . . . , hn are a basis of the kernel of g : J −→ J′.
In particular, (ui, hi)1≤i≤k is a dual basis for the pair H′, J′. By the general transition
rule from modules to comodules, we have β(x) = ∑n

i=1 ui(x)⊗ hi. Hence we obtain
(denoting the map g : J −→ H′ simply by overbar)

(1⊗ g)β(x) =
n

∑
i=1

ui(x)⊗ hi.

We now use that for i > k the term hi vanishes, that u1(x) = x, and ui(x) = 0
for i = 2, . . . k since x is H′-fixed; so the RHS in the preceding equation is simply
x ⊗ h1. On the other hand, uJε J annihilates all hi with i > 1, so we likewise obtain
(1⊗ uJε J)(∑i ui(x)⊗ hi = 1 · x⊗ uJε J(h1) = x⊗ h1. Therefore x is cofixed under g,
as desired.

2 Hopf-Galois structures on separable extensions

2.1 Describing (Hopf) algebras via Γ-sets

Our goal in this section is a description of finite-dimensional commutative algebras
A over a fixed base field K by a simpler object, almost combinatorial in nature. A de-
scription of (finite-dimensional) commutative K-Hopf algebras will also emerge al-
most for free. This technique will allow to prove some missing facts about (co)fixed
algebras in a Hopf-Galois situation, and it is an easy way towards Greither-Pareigis
(GP) theory, which will be treated in the next section. We will assume for simplicity
that our base field is of characteristic zero (or a finite field), so that all field exten-
sions are separable. (It would be sufficient to assume that all algebras that we use
are “separable”, but then we would have to define what that means.)

Every field K has an algebraic closure K, which can be thought of as a filtered
union of finite (in particular algebraic) field extensions L/K. In every concrete sit-
uation it would be enough to work with one such extension L/K. But very often
that field L needs to be changed (e.g. enlarged) in a longer argument, and it is a hin-
drance to fix such an L too early. The situation is similar to polynomials: one needs
the full polynomial ring a priori, and bounds on degrees of polynomials often tend
to obscure theoretical arguments that are otherwise clear. The price to pay is that
Γ = ΓK, the automorphism group of K/K, is (almost always) infinite. But this group
bears a very nice topology, called profinite. It suffices to know the following facts:
The open subgroups U are exactly the fixed groups of finite extensions L/K, and
they have finite index, equal to [L : K], in Γ; every open subgroup contains another
subgroup V still of finite index which is normal in Γ, and then G = Γ/V is the Galois
group of the fixed field Fix(V)/K. The group Γ will act on various finite sets , and
all actions will be continous in the following sense: for every s ∈ S, the so-called
stabilizer Γs = {γ ∈ Γ : γs = s} is open. Then the intersection of all stabilizers is
again open, contains an open normal subgroup V, and “in reality” the action is then
via the finite group G = Γ/V.
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After these preliminaries, let us repeat what a Γ-set S is: it is a set together with
a map Γ× S −→ S denoted by a dot in the middle or by nothing, such that some
obvious axioms are satisfied: eΓs = s, and β(γs) = (βγ)s for all s ∈ S, β, γ ∈ Γ. We
also say: The group Γ operates on the set S. The stabilizer of an element has already
be defined; it is always a subgroup. A typical example is the set S = {1, . . . , n},
acted upon by the symmetric group of order n!.

Another example is the linear group GL(n, K) action (via left multiplication by
matrices) on the column space Kn.

We offer some more remarks about group operations, for later use.

(1) The notion of morphism between two Γ-sets is so obvious that we do not have
to write it down.

(2) If s0 ∈ S, then Γs0 = {γs : γ ∈ Γ} is a Γ-subset of S, and it does not contain
any nonempty smaller Γ-subset. Such subsets are called orbits. Every Γ-set S
is the disjoint union of its orbits in an essentially unique way.

(3) For any subgroup ∆ < Γ, the set of cosets γ∆, γ ∈ Γ, is a Γ-set, via the operation
ρ(γ∆) = (ργ)∆. It is written Γ/∆ (careful: this need not be a group unless ∆ is
normal), and it has only one orbit.

(4) Every orbit in a Γ-set is isomorphic to the Γ-set Γ/V, where V is defined to be
the stabilizer of a chosen element.

LetAK be the class (or category) of all commutative finite-dimensional K-algebras
without nilpotent elements, and let SΓ be the category of all finite Γ-sets (with con-
tinuous action, always), where Γ is short for ΓK. Our goal is to establish inverse
bijections (more precisely equivalences of categories) Φ : AK −→ SΓ and Ψ going
the other way, and to see what happens to Hopf algebras under this correspondence.
We need a minimum of algebraic informaton on algebras.

Proposition 2.2.1. Let A be a finite-dimensional commutative K-algebra. If A has no
nonzero nilpotent elements, then A is isomorphic to a finite product of fields Li with [Li :
K] < ∞. (The reverse implication is also true, and obvious.)

Proof. (a) We first argue that A has only finitely many maximal ideals. Indeed let
(mi)i∈N be an infinite list of distinct maximal ideals. If we take xi ∈ mi \ms+1
for all i ≤ s, then the product x1 · · · xs is in the intersection m1 ∩ . . . ∩ms but
not in ms+1. Hence the intersection m1 ∩ . . . ∩ ms+1 is properly smaller than
m1 ∩ . . . ∩ms, which means that we have a properly descending infinite chain
of ideals, which is of course impossible.

(b) Every prime ideal p of A is maximal. Indeed if p is prime, the factor ring A/p
is still finite-dimensional over K and has no zero-divisors. It is well known
that this forces A/p to be a field. That is, the ideal p was maximal.

(c) The set of nilpotent elements in A is equal to the intersection of all prime ideals.
This is a standard fact with a standard proof, which will be omitted here.

(d) Now let m1, . . . ,mt be the complete list of the maximal ideals of A. This is
also the list of all prime ideals, so the intersection of the mi is zero, by part (c)
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and our hypothesis. By the Chinese Remainder Theorem we get A ∼= A/0 ∼=
∏t

i=1 A/mi, and it suffices to put Li = A/mi.

We now define the map (functor) Φ : AK −→ SΓ by setting

Φ(A) = AlgK(A, K).

Here AlgK(A, K) denotes the set of K-algebra homomorphisms ( = K-linear ring ho-
momorphisms) from A to K. We make Γ act on Φ(A) by the formula γ · ϕ = γϕ :
A −→ K, for all ϕ ∈ AlgK(A, K) and γ ∈ Γ. Recall that Γ is the automorphism group
of the field K over K, so the composition γϕ makes sense.

It is easily seen that Φ(A1 × A2) is the disjoint union of Φ(A1) and Φ(A2) (a
homomorphism ϕ must map exactly one of the idempotents (1, 0) and (0, 1) to 1,
and the other one to 0). If A = L is a field finite over K, then the action of Γ on Φ(L)
really happens through G = Gal(M/K) = Γ/ Fix(M), where M is any normal field
extension of K which is again finite-dimensional. We also note that the cardinal of
Φ(A) is the K-dimension of A, as is easily seen by reduction to the case that A = L
is a field.

Example 2.2.2. Let K = Q and A = Q(i). This is already a normal field extension.
The set Φ(A) has two elements f0 and f1; one of them is the inclusion in Q, the other
is complex conjugation. More generally, if A = L = K(α) where p(x) is the minimal
polynomial of α, then Φ(L) corresponds to the set {α, α2, . . . , αdeg(p)} of roots of p(x)
in the algebraic closure, just by looking at the image of α under f . This also shows
that the cardinal of Φ(L) equals [L : K]; because of the compatibility with products,
we have |Φ(A)| = dimK(A) in general.

Let us now define Ψ : SΓ −→ AK. Generally Maps(X, Y) denotes the set of
mappings from X to Y (this was also written YX earlier). If both sets are Γ-sets, then
we let MapsΓ(X, Y) = { f : X −→ Y| f (γx) = γ f (x) ∀x ∈ X ∀γ ∈ Γ}. Define

Ψ(S) = MapsΓ(S, K).

Via pointwise operations, Ψ(S) becomes a commutative ring, and also a K-vector
space; we will see its dimension is |S|. This K-algebra obviously has no nilpotents,
so it is in AK.

The two operators are inverse to each other. We will show this and in the process
gain a better understanding. Assume S is an orbit. Then S ∼= Γ/U with an open
subgroup U. Let L be the fixed field of U. Then [L : K] = [Γ : U]. We claim
Φ(L) identifies with S. Indeed via restriction, Γ surjects onto Alg(L, K̄, and γ, δ ∈
Γ become the same there iff their restrictions to L agree as maps; this in turn is
equivalent with γ−1δ being identity on L, that is, γ−1δ ∈ U, and this is finally the
same as saying γU = δU. On the other hand we claim that Ψ(Γ/U) identifies with
L. Indeed, for every f ∈ MapsΓ(Γ/U, K̄, the element x = f (eΓU bust be fixed under
U, hence in L; on the other hand, f is determined by x, given that f (γU) must be
γ(x), and any x ∈ L may take this role.

So we see that Φ and Ψ define inverse bijections between (finite) Γsets which are
orbits on the one side, and K-algebras which are field on the other side. Now any
Γ-set is the disjoint union of its orbits, and any algebra A is the product of fields. So
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the claim about Φ and Ψ also hold for the larger domains where they are defined,
given that our operators turn disjoint unions into cartesian products In passing we
have also proved: |Φ(A)| equals the K-dimension of A.

We give some examples:

Example 2.2.3. Recall that for any open subgroup H (of finite index) in Γ, we saw
that the fixed field L of H inside K corresponds to the Γ-set Γ/H.

Example 2.2.4. Let I be any finite set with trivial Γ-action (which means γi = i for
all γ ∈ Γ, i ∈ I). What are then the Γ-invariant maps f from I to K? All values of f
must again be fixed under Γ, and the fixed field of Γ is the ground field K, so we get
Ψ(I) = Maps(I, K) = K I the direct product of copies of K, indexed by I. A special
case of this is: The “trivial” algebra K corresponds to the one-point set. (Of course
the operation on that set cannot be other than trivial.)

Example 2.2.5. Fix an integer n > 1, and choose a primitive n-th root ζn of unity in
K. We define the cyclotomic character ω : Γ −→ (Z/nZ)∗ by γ(ζn) = ζ

ω(γ)
n . Using

this we make Z/nZ into a Γ-set, which will actually be considered as a Γ-group
later on: we denote reduction mod n by an overbar and define

γ · a = ω(γ)a, a ∈ Z/nZ.

Denote by Cn a multiplicatively written cyclic group of order n, and pick a generator
σ. Let A = K[Cn] be the group ring; we have A ∼= K[x]/(xn − 1) with σ mapping to
x.

We claim that Φ(A) is Z/nZ with the cyclotomic Γ-action just defined. Indeed,
the algebra homomorphisms from A to K are completely determined by the image
of σ, and this can be any power of ζn. Thus, let ϕa : A −→ K be the homomorphism
that sends σ to ζa

n. If we apply γ, we get the homomorphism that sends σ to γ(ζa
n) =

ζ
ω(γ)a
n . Identifying ζa

n with a ∈ Z/nZ we get the claim.

Example 2.2.6. We have seen that Φ turns direct products of algebras into disjoint
unions of sets. It is natural to ask: What corresponds to the direct product of sets
on the algebra side? The answer is simple, nice and important: Φ(A ⊗ B) can be
naturally identified with Φ(A)×Φ(B), since every algebra homomorphism starting
from A ⊗ B is uniquely characterized by what it does on A = A ⊗ 1, and on B =
1⊗ B.

At the end of this section, let us reconsider Hopf algebras in the light of this cor-
respondence. We have not yet commented on the obvious fact that Φ and Ψ are not
only defined on objects but also on maps (the technical details can safely be left to
our readers); and both of the correspondence reverse the direction of the maps. Oth-
erwise everything is preserved. Now a K-Hopf algebra H is just a K-algebra, with
three extra algebra maps, which are (in order of decreasing complexity): the comul-
tiplication ∆H : H −→ H ⊗ H, the antipode sH : H −→ H, and the augmentation
εH : H −→ K. These maps must also obey certain axioms, coded as diagrams. The
nice thing is now that we can mechanically translate all these things in the category
of Γ-sets. Let S = Φ(H). Then:

• ∆H gives mS : S× S −→ S;
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• sH gives iS : S −→ S;

• εH : H −→ K gives a map from the one-element set to S, that is: a distin-
guished element eS of S.

From the nature of the diagrams it becomes clear without further effort that the
Hopf axioms translate into saying that S is a group under mS, with neutral element
eS and inverse map iS. Furthermore, all maps on S etcetera are Γ-invariant. Let us
define a Γ-group N to be a group N which is also a Γ-set, with the obvious compat-
ibility condition that multiplication and formation of inverses commute with the Γ
action and eN is Γ-fixed. (This is actually a consequence. ) We obtain:

Theorem 2.2.7. There are inverse bijective correspondences Φ′ and Ψ′ between the category
HK of finite-dimensional commutative K-Hopf algebras on the one hand, and the category
GΓ of finite Γ-groups on the other. As before, the correspondences reverse all arrows; the
product of Γ-groups corresponds to the tensor product of Hopf algebras.

We give a few examples.

Example 2.2.8. Let us resume Example 2.2.4, assuming that the finite set I is a group
(still with trivial Γ-action). Then Ψ(I) = K I becomes a Hopf algebra; let us look at
the details, and we will recognize an old acquaintance . For i ∈ I let ei ∈ K I be the
idempotent having 1 at position i and zero everywhere else; then (ei)i∈I is a K-basis
of K I . From the definition of Ψ one can easily check the following:

∆ei = ∑
j∗k=i

ej ⊗ ek;

s(ei) = ei−1 ;
ε(ei) = δi,1. Kronecker’s delta; 1 is the neutral element of I

Example 2.2.9. We go back to Example 2.2.5. We have the Hopf algebra H = K[Cn]
with ∆H(σ) = σ ⊗ σ, SH(σ) = σ−1, and εH(σ) = 1. Recall that S = Φ(H) =
{ϕ0, . . . , ϕn−1} where ϕi(σ) = ζ i

n. We want to determine the group structure of S,
which as a set was in canonical bijection with Z/nZ, so we expect that bijection to
be also a group homomorphism. This is indeed the case: The product ϕiϕj in S is
given by the composition

H −→ H ⊗ H −→ K,

with the last map being h⊗ h′ 7−→ ϕi(h)ϕj(h′). Evaluated on σ, we get σ ⊗ σ and
then ϕi(σ)ϕj(σ), which is ϕi+j(σ). So indeed ϕiϕj = ϕi+j. This suffices to pin down
the group structure. Recall that we already determined the Γ-action; one should
spend a moment checking directly that the action is compatible with the group struc-
ture, as it has to be.

2.2 Translating Hopf-Galois structures and the Fix construction

We have a good understanding of algebras and Hopf algebras, via our correspon-
dence. It will not be a surprise that the correspondence also applies to Hopf-Galois
situations. Let us note two things: the resulting description is really simple, much
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simpler than the original one (this is perhaps not surprising), and the coalgebra ver-
sion (Hopf-Galois objects) is much more suitable for the translation than the algebra
version (which is perhaps surprising at first).

Recall what it means that A is an H-Hopf-Galois object: we have a sort of di-
agonal β : A −→ A ⊗ H which is co-associative and co-unitary, and the induced
map

γ : A⊗ A −→ A⊗ H, a⊗ b 7−→ (a⊗ 1) · β(b)
is an isomorphism. (Equivalently, A is an H∗-Hopf-Galois extension, but this will be
in the background for the moment.) We proceed to translate this into the language
of Γ-sets. Let A correspond to the Γ-set S, and let H correspond to the Γ-group N.

Then β translates into a map m = mS,N : S× N −→ S. The axioms of coassocia-
tivity and co-unitarity are equivalent then to saying that m defines a (right) action
of the group N on S, so S is a right N-set. (Recall that S is a left Γ-set.) We now ask
ourselves what the bijectivity of γ means in terms of sets; the answer will be nice.
As a preparation we need:

Definition 2.2.10. Let Π be a group acting on a set X from the right. (Left actions can be
treated similarly.) Then the action is transitive, if for any two x, y ∈ Y there is π ∈ Π with
xπ = y. The action is called simply transitive, when this π always exists, and is unique.

Remark 2.2.11. The action is transitive iff X is an orbit, that is, isomorphic to U\Ω
for some subgroup U. The action is moreover simply transitive iff that subgroup
is trivial. In other words: A set X with a simply transitive action of a group Ω is
basically a copy of the group, only that in X we do not have a distinguished element,
like the unit element in Ω.

Proposition 2.2.12. With the above notation, the map γ is bijective if and only if the result-
ing action of N on S (on the right) is simply transitive.

Proof. One mechanically translates γ into a map q : S × N −→ S × S, given by
q(s, ν) = (s, sν). The bijectivity of q is then equivalent to the simple transitivity of
the action of N on S.

This situation is only possible if S and N have the same cardinality. We already
know that these cardinalities are equal to the respective K-dimensions of K and H.
So we recover the fact that a Hopf-Galois situation is only possible if the algebra and
the Hopf algebra have the same dimension.

To complete the picture we revisit the Galois correspondence, that is, fixed and
co-fixed subalgebras. As mentioned before, it is simpler to work with the comodule
side. So assume that the algebra A is a J-Hopf-Galois object, and g : J −→ J′ is a
surjective homomorphism of Hopf algebras. Let S = Φ(A), N = Φ(J), and N′ =
Φ(J′). Then S has an action of N from the right which is simply transitive, and N′

embeds as a subgroup of N (we consider this as an inclusion). Let B = Fix(g) ⊂ A
be the co-fixed algebra; we want to understand T = Φ(B).

To do this we just have to translate the construction. As a set or vectorspace, B
was defined as a difference kernel of two maps δ0 and δ1. That is, B is the largest
subalgebra of A such that composing the inclusion ι : B −→ A with δ0, and δ1 re-
spectively, gives the same map. Hence T is the finest surjective image of S such that
composing Φδ0 (and Φδ1 respectively) with the surjection S −→ T gives the same
map. In other words, we are looking for the equivalence relation on S generated
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by the postulate that Φδ0(z) and Φδ1(z) are equivalent, for all z in the domain of
definition of the Φδi, which is S×N′. Now Φδ0 : S×N′ −→ S is just the action of N
on S, restricted to N′; and Φδ1 is the “no action” map, sending (s, ν) −→ s ∗ 1N = s.
Thus we are looking for the finest equivalence relation on S that makes s and s ∗ ν
equivalent, for all ν ∈ N′.

This description is very concrete: T is just “S modulo N′”, that is, the set of
N′-orbits in S. This set T still has an action of N from the right. The fact that N
acts simply transitively gives at once that all N′-orbits have |N′| elements, so |T| =
|N|/|N′|. We also see that T (or rather the equivalence relation defining it) allows
to recover N′. We repeat these insights:

Theorem 2.2.13. Let the notation be as above. Then we have an equality dimK(B) =
dimK(J)/ dimK(J′). Moreover the operator “co-fixed algebra” is injective, in the sense that
surjections J −→ J′ and J −→ J′′ that give rise to different subgroups N′, N′′ will also give
rise to different co-fixed algebras.

2.3 Base change

In this short section we take a different look at the (Hopf) algebras defined by Γ-
sets, and Γ-groups, respectively. This view is often taken in the literature, and there
it comes under the name “faithfully flat descent” or “Galois descent”.

The correspondences defined in the preceding section depend on the base field
K; in the present section it will be better to include this in the notation, writing ΦK
instead of Φ, and so on. Whenever L is a finite extension of K within K, the algebraic
closure of L is still K, and ΓL = Aut(K/L) is an open subgroup of ΓK. (Recall that if
L is normal, then G = ΓK/ΓL is the Galois group of L/K.)

We slightly rewrite the definition of ΨK. Remember that ΨK(S) is the set of all
ΓK-equivariant maps f : S −→ K. Actually Maps(S, K) is itself a Γ-set, by setting

(γ f )(s) = γ f (γ−1s), f : S −→ K, s ∈ S.

When one checks that this does define a ΓK-action, one will also see that one re-
ally needs to take inverses as written. But it is then clear that MapsΓK

(S, K) is then
exactly the set of all f ∈ Maps(S, K) which are fixed under this new action.

For the next lemma (which is simple but fundamental) we need a harmless bit
of notation: if X is any ΓK-set, and L as above, then X|L is the same set as X, but
with restricted action: only ΓL acts. It may seem unnecessary to indicate this, but
the reader will see that it is useful for clarity.

Lemma 2.2.14. With the above notations, we have for every commutative finite-dimensional
K-algebra A the following:

ΦL(L⊗K A) = ΦK(A)|L.

Proof. Again this will follow from the defining properties of the tensor product. Let
us look at L-algebra homomorphisms ϕ′ : L⊗K A −→ K. Then ϕ′(y⊗ a) = y · ϕ′(1⊗
a) for all y ∈ L and a ∈ A, so ϕ′ is uniquely determined by its restriction ϕ to 1⊗ A,
which we identify with A. This already identifies ΦL(L⊗ A) with ΦK(A) as sets. It
is then obvious that the action of ΓL is the same on both of these sets, now identified,
which finishes the argument.
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The following will be formulated for commutative K-algebras, but everything
holds also for comm. K-Hopf algebras with the appropriate changes. Consider a Γ-
set S and the corresponding algebra A. There exists an open subgroup U of Γ such
that H acts trivially on S, and we can even take U normal.

Let M be the fixed field of U; then U = ΓM, and G = Γ/U is the (finite) Galois
group of M/K. By the lemma, M ⊗ A is the “trivial” algebra MS = Maps(S, M),
because the ΓM-action on Maps(S, K) is just given by the action on K, and the fixed
field is M. The factor group G acts on Maps(S, M) in a way totally similar to the ΓK-
action on Maps(S, K): given g ∈ G and f : S −→ M, we have (g f )(s) = g f (g−1s).
Thus G acts by K-algebra automorphisms on M⊗ A, and the G-fixed subalgebra is
A, for the following reason: Taking ΓK-invariants at once is the same as first taking
ΓM-invariants and then taking G = ΓK/ΓM-invariants. Thus every comm. K-algebra
A can be obtained from a “trivial” M-algebra by taking invariants under a suitable
Gal(M/K)-action, for a suitable finite Galois extension M/K. This M is also called
a trivializing extension for A.

2.4 The so-called Greither-Pareigis correspondence

In this section, actions of Γ will be denoted by a dot · (or nothing), and an action of
a Γ-group on a Γ-set will be denoted by ∗. The former is from the left, and the latter
usually from the right.

Our classical example is A = L a G-Galois extension of K, with the structure
of KG-Hopf-Galois object given by β(x) = ∑g∈G g(x) ⊗ eg. The Γ-group N corre-
sponding to KG is the group G with trivial Γ-action; the Γ-set corresponding to L is
S = G = Γ/H where H is the group fixing L, with the obvious left Γ-action; and
one checks that the action of G (as the group) on G (as the set) is again given by the
group structure in G. This time the action is on the right.

Now let us look at a general situation: A is an H-Hopf-Galois object, with A
corresponding to the Γ-set S and H corresponding to the Γ-group N. It is intentional
that we don’t use the letter G here, since we are not assuming that A is a G-Galois
extension of K. By translation we get a simply transitive action ∗ : S × N −→ S.
The map N −→ Perm(S) which sends ν to πν : S ∋ s 7−→ s ∗ ν is injective, and an
anti-homomorphism of groups (if we use the usual composition as the group law in
Perm(S). Thus, giving N and its action on S is the same as giving a simply transitive
subgroup Π = {πν : ν ∈ N} of Perm(S).

Let us denote the map s 7→ γ · s (with s ∈ S and γ ∈ Γ) by λγ. (Later this will
indeed be a left multiplication.) The Γ-invariance of ∗ gives the following formula,
for γ ∈ Γ, ν ∈ N, and s ∈ S:

λγ(πν(s)) = πγ·ν(λγ(s)),

that is,
πγ·ν = λγπνλ−1

γ ,

or in terms of the group Π (we simply transfer the Γ-action from N to Π):

γ · ϕ = λγϕλ−1
γ , ∀ϕ ∈ Π.

This shows that in our setting the Γ-action on Π (or N) can be determined from the
other data, and moreover that Π as a subgroup of Perm(S) must be normalized by
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all the λγ, with γ ∈ Γ. (If Ω is any group with any subgroup U, then x ∈ Ω is said
to normalize U iff xUx−1 = U. The set NΩ(U) of all x that normalize U is called the
normalizer of U in Ω. It is the biggest subgroup of Ω which contains U as a normal
subgroup.)

Now assume A = L is a field. Then the Γ-set S becomes an orbit: it is Γ/Γ′

with Γ′ the open subgroup fixing L. (We have replaced U by Γ′, to conform with the
literature.) Then λγ : Γ/Γ′ −→ Γ/Γ′ is indeed multiplication by γ on the left. We
repeat what we have just seen:

Proposition 2.2.15. Let S = Γ/Γ′ as above and let Π ⊂ Perm(S) be a simply transitive
subgroup. Then the resulting action ∗ : S ×Π −→ S is Γ-equivariant if and only if the
Γ-action on Π is given by the formula

γ · π = λγπλ−1
γ .

In particular Π must be normalized by all the left translations λγ.

Let us denote the subgroup of Perm(S) made up by all the λγ by Λ. We refor-
mulate our findings as follows.

Theorem 2.2.16. Let L/K be a field, finite over K, with fixed group Γ′ ⊂ Γ. Then all
instances of “L is a H-Hopf-Galois object” are given by simply transitive subgroups Π ⊂
Perm(Γ/Γ′) such that Π is normalized by Λ. The Hopf algebra H is given by the group Π
and the Γ-action via Λ (by conjugation).

In the classical example where L/K is Galois with group G, the group Π is made
up by all right translations ργ as we have seen. Let us state this again, in differ-
ent words: G = Γ/Γ′ (which is also S!!), the group G acts on the set G by right
multiplication, so Π = G acting by right multiplications on G. Here Π is not only
normalized by Λ but actually centralized.

Let us revisit another example. Let K = Q, p an odd prime, a ∈ Q not a p-th
power. Let α = p

√
a. Then L = Q(α) has degree p; put H = Q[C where C is a cyclic

group of order p. We have seen that L/Q is an H-Galois object. Let Γ′ be the fixed
group of L and let Γ0 ⊂ Γ′ be the fixed group of the normal closure L′ of L, which
is given by E = Q(α, ζp). Finally write G for Γ/Γ0; this is the Galois group of L′/Q.
It is instructive (if a bit involved) to determine G explicitly. Let σ ∈ G be described
by σ(α) = ζpα and σ(ζp) = ζp. On the other hand τ ∈ G is specified by saying that
it fixes α and ζp to ζt

p where t is a chosen primitive root modulo p. Then G is the
semidirect product of the cyclic group C of order p generated by σ,which is normal,
and the cyclic group G′ of order p − 1 generated by τ. The action of the latter on
the former is (only in different notation) the cyclotomic one, and G′ is the image of
Γ′ in G, so Γ/Γ′ = G/G′. We can identify G/G′ with the set S = {0, 1, . . . , p− 1},
and the group Π (which is again cyclic of order p, with cyclotomic Γ-action) acts on
this by cyclic shifts. Observe that τ ∈ G acts on S as multiplication by t. So this
does not commute with the action of Π, but the group Π is normalized by τ which
is “multiplication by t”. In fact, the normalizer of the group Π (which is generated
by the cyclic permutation c : 0 7→ 1 7→ · · · 7→ p− 1 7→ 0) is exactly generated by c
and τ, as we will prove later.
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2.5 Explicit formulas

A variant of a previous example goes as follows (replace the odd prime p by the
number 4): Take a ∈ Q squarefree, a ̸= ±1. Take L = Q(x) with x4 = a, and
J = Q[C4], where C4 is cyclic of order 4 with chosen generator σ. Then one can
show that L has degree 4, and β : L −→ J ⊗ L, x 7−→ x ⊗ σ, makes L into a J-
Galois object. For S = Φ(L) we get the set {0, 1, 2, 3} with a certain Γ-action, and
N = Z/4Z with the cyclotomic Γ-action.

On the module side, we have H = J∗ = QZ/4Z, which is the product of four
copies of Q, indexed by 0, 1, 2, 3. We have corresponding idempotents e0, . . . , e3
(just one 1 and three zeros each), and the action of ej on L is projection to the one-
dimensional subspace Qxj. The same holds if we perform a base-change, that is we
tensor everything with E = Q(i) over Q; but then we should be careful and write
E ⊗ L instead of E(x) (even though one can show that these objects are equal, as
E(x) has degreee 8 over Q). We define

η = e0 + ie1 − e2 − ie3 = (1, i,−1,−i) ∈ E⊗ H.

The following lemma is checked by calculation, using that we know the diagonal
map on Hopf algebras of type KN.

Lemma 2.2.17. The element η is group-like, that is, ∆(η) = η ⊗ η. Note moreover that
η4 = 1.

Now we define c = 1
2(η + η3) and s = 1

2i (η − η3). In quadruple notation we
have c = (1, 0,−1, 0) and s = (0, 1, 0,−1). The action of c on L is certainly not an
automorphism; but if restrict the action to the quadratic subfield

L0 = Q⊕Qx2

, then c actually acts as the nontrivial automorphism of L0 (you should convince
yourself of this).

Lemma 2.2.18. 1. cs = 0 and c2 + s2 = 1.

2. ∆c = c⊗ c− s⊗ s and ∆s = s⊗ c + c⊗ s.

Remark 2.2.19. These formula explain the choice of the letters; c and s are intended
to be reminiscent of cosine and sine.

Proof. 1. The first formula is easy to show from the definitions, and actually ob-
vious if we look at c and s written as quadruples.

2. We have 2∆η = η ⊗ η + η−1 ⊗ η−1. On the other hand, for 4(c⊗ c− s⊗ s) we
get the eight-term sum η⊗ η + η⊗ η−1 + η−1⊗ η + η−1⊗ η−1 + η⊗ η− η⊗
η−1 − η−1 ⊗ η + η−1 ⊗ η−1. After simplifying and comparing we obtain the
first formula. The second formula is checked similarly.

We said that the element c ∈ H does not act as a (field) automorphism. This is
compatible with the fact that it is not group-like. However for x, y ∈ L we have the
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following formulas, which are reminiscent of the addition theorems for cosine and
sine:

c(xy) = c(x)c(y)− s(x)s(y);
s(xy) = s(x)c(y) + c(x)s(y).

It is open to debate whether these formulas are illuminating. It is certainly possible
to perform similar computations in examples of larger dimension, but in our opinion
the resulting formulas will not tell us much.

3 First applications of the main theorem

3.1 Almost classical extensions

This notion is inspired by the example L = Q( p
√

a), whose normal closure is L(ζp).
Here the group G = Gal(L(ζp)/Q) can be split as a semidirect product, one factor of
which is Gal(L(ζp)/L). This is in fact a rather special situation. (Of course it arises
in a trivial way if L/K is already a Galois extension itself.)

So assume that as always L/K is a finite-dimensional field extension with normal
closure L̃/K. Let G = Gal(L̃/K), and let G′ < G be the subgroup Gal(L̃/L). So if
Γ′ is the subgroup of Γ fixing L, then the set of cosets Γ/Γ′ identifies with G/G′.
Assume moreover that there is a normal extension M/K inside L̃ such that

ML = L̃, M ∩ L = K.

The field M will be called a complement for L in L̃. Let N < G be the group fixing
M; this is a normal subgroup with Gal(M/K) = G/N, and the intersection N ∩ G′

is trivial. Better than that: G is the semidirect product N ⋊G′. In the above example,
the field M is Q(ζp), and G is the semidirect product of two cyclic groups, the one
of order p− 1 acting on the one of order p, which is normal.

Let P ⊂ Perm(G/G′) be the set (= subgroup) of all left translations λν with
ν ∈ N. Recall Λ = {λγ : γ ∈ Γ} ⊂ Perm(G/G′).

Proposition 2.3.1. The group P acts simply transitively on G/G′, and it is normalized
by Λ. Therefore we obtain a Hopf-Galois object L −→ L⊗ H, where the Hopf algebra H
belongs to the abstract group P with Γ-action via Λ.

Proof. We first show that the action is transitive. It suffices that we can reach every
class gU from U = 1GĠ′, by applying an element of P. Indeed we can decompose
g = νu with ν ∈ N and u ∈ G′, and then λnu(1GG′) = ν · 1G · G′) = νG′ = gG′. The
uniqueness of ν is shown similarly; it follows from the fact that G′ and N intersect
trivially. Finally, P is normalized by Λ, because λgλνλg−1 = λgνg−1 , and gνg−1 ∈ N
since N is normal in G.

Example 2.3.2. We revisit L = Q( p
√

a) with hypotheses as before. Here we may take
M = Q(ζp), which is a normal (even abelian) extension of Q with degree p− 1, so
M∩ L = Q, and we have already used that ML = L̃ = L(ζp) is the normal closure of
L/Q. The resulting Hopf-Galois structure coming from this “almost classical” setup
is the same as the one explained before. Recall that the Γ-action on the cyclic group
N of order p is the cyclotomic action.
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Example 2.3.3. We take any non-normal cubic extension L/K. Then the Galois group
G of L̃/K must be a copy of the symmetric group S3, and G′ < G must be generated
by a transposition. So we can take N to be the unique subgroup of order 3 in S3; it
is normal as is well known. Let us pin this down: “All cubic extensions are Hopf-
Galois” (and even almost classically so).

Motivated by the last example, let us mention that there are extensions L/K
which are not Hopf-Galois at all. Indeed there are many, but let us just discuss
one class of examples. Let L/K be of degree 5 such that L̃/K has Galois group G iso-
morphic to the alternating group A5. Then S = G/G′ is a 5-element set, on which
G acts transitively, and in particular not trivially. So the resulting group homomor-
phism λ : A5

∼= G −→ Perm(S) is a nontrivial homomorphism defined on a simple
group, and therefore injective (the kernel is always a normal subgroup). That is, Λ
is a copy of A5 lying in Perm(S) ∼= S5. So Λ is a subgroup of index 2 in S5, hence
normal; hence it contains all 5-cycles (look at the image in the group S5/Λ of order
2). In fact Λ is A5, but we don’t need this. Now assume L/K is Hopf-Galois; this
gives a simply transitive subgroup N < Perm(S) normalized by Λ. But then N has
order 5, so it actually lies in Λ. On the other hand the simple group Λ does not
normalize any nontrivial subgroup, contradiction.

3.2 The Byott translation

We keep the following setup: L̃ is the normal closure of the finite extension L/K; the
Galois group of L̃/K is G; and the subgroup belong to L is G′ < G. Then G′ contains
no nontrivial normal subgroup of G, since otherwise L̃ would not be the minimal
normal over-field of L. One may always think of the example where G = Sn, and
G′ is the subgroup of all permutations that fix 1; then S = G/G′ identifies with
{1, . . . , n}; the dimensions are [L : K] = n and [L̃ : K] = n!.

If one wants to exploit GP theory fully, it is hard to find the eligible subgroups
Π ⊂ S = Perm(G/G′). Byott’s clever idea is to start with Π and look for G instead.
Of course this takes some explanation: what is the suitable structure inside of which
we may look for G? It is certainly not Π itself, that would be too simple. We begin
with some abstract group theory, omitting the proofs of statements which will not
really be used. In the following, let X be any group and f : X −→ X be any bijective
map. By Aut(X) we denote the set of all group automorphisms of X; this is again
a group, under composition. For x ∈ X, the map cx : X −→ X, y 7−→ xyx−1 is in
Aut(X), and called conjugation by x. Recall that λv is left translation by an element
v ∈ X.

Lemma 2.3.4. The following are equivalent:

(i) f (xy−1z) = f (x) f (y)−1 f (z), for all x, y, z ∈ X.

(ii) f can be written f = λu ◦ ϕ for some ϕ ∈ Aut(X), u ∈ X.

(iii) f can be written f = ϕ ◦ λv for some ϕ ∈ Aut(X), v ∈ X.

Proof. Most of the proof is easy and left to the reader. A few hints: Going from (ii) to
(iii), ϕ stays the same, but v is not the same as u (what is it, exactly?) The implication
(ii) to (i) is a calculation. Let us show how (i) =⇒ (ii).
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First step: The set of bijections f satisying (i) is closed under composition. (Fairly
obvious.)

Second step: Every left multiplication λd satisfies (i). (Quick calculation.)
Final step: Assume f satisfies (i). Let d = f (eX) and put g = λd−1 ◦ f . Then

g again satisfies (i), and it has the extra property that it maps the neutral element
eX to itself. Putting y = eX in the equality (i), we get that g is a homomorphism of
groups.

Definition 2.3.5. The subset of Perm(X) consisting of all f that satisfy one of the three
conditions of the lemma is called the holomorph Hol(X). As already said, this subset is
closed under composition, and in fact it is a subgroup.

It is easily seen that the decomposition in item (ii) of the lemma is unique. If ΛX
denotes the subgroup of all λx, x ∈ X, then ΛX is normalized by Aut(X) (see the
exercises), and we get a representation of the holomorph as a semidirect product:

Hol(X) = ΛX ⋊ Aut(X).

For later use we need a sharpening of this statement.

Proposition 2.3.6. Hol(X) is the exact normalizer of ΛX in Perm(X).

Proof. We already know that Aut(X) normalizes ΛX, and of course ΛX normalizes
itself. Putting these together we have that Hol(X) normalizes ΛX. The point is to
show the reverse inclusion. Assume f normalizes ΛX. As in the proof of the lemma
we write f = λg, where λ is left multiplication by a suitable element, and g fixes
e = eX. Then g also normalizes ΛX. Let us show that g is an automorphism. For any
x ∈ X there is x′ ∈ X such that gλxg−1 = λx′ . Evaluating this in e we get g(x) = x′,
so for all x we have the rule gλxg−1 = λg(x). Now we take x, y ∈ X and evaluate
w := gλxyg−1 two ways:

w = gλxg−1gλyg−1 = λg(x)λg(y) = λg(x)g(y);

and
w = λg(xy).

Evaluating w in e and using both these equalities shows that g(x)g(y) = g(xy) as
desired.

A good example for this is given by the cyclic group X = C of order p; we
identify C with Z/pZ. The left multiplications (rather: additions!) ΛC are then all
the powers (rather: multiples) of the p-cycle (0 1 . . . p− 1); this is again a copy of
Z/pZ. The automorphisms of C are given as multiplications by integers prime to p;
so Aut(C) is a copy of the unit group Z/pZ∗. The holomorph of C is a non-abelian
group of order p(p− 1), and it is the exact normalizer of ΛC.

Before reading on, please review the main result of GP theory. In the sequel we
will write N instead of Π, to conform with the literature. The main idea of Byott is,
very roughly: instead of having N permute G/G′, we let a copy of G permute N.
We set up some notation, and then we formulate and prove Byott’s result. We keep
the assumption that G is a finite group, G′ a subgroup, and G′ contains no nontrivial
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normal subgroup of G. Moreover we still assume that N is a group of order |G/G′|.
Define

N = {α : N −→ Perm(G/G′) : α(N) simply transitive};
and

G = {β : G −→ Perm(N) : β(G′) is the stabilizer of eN}.

Theorem 2.3.7. 1. There is an explicit bijection between the setsN and G (described in
the proof).

2. If α ∈ N corresponds to β ∈ G under that bijection, then α(N) is normalized by ΛG
if and only if β(G) is contained in Hol(N).

Before we come to the proof, let us quickly explain why this is so useful: While
Perm(G/G′) is in general much larger that G/G′, the holomorph Hol(N), while
larger than N, is much smaller, comparatively seen.

Proof. As a small preparation, we observe that any bijection of sets a : X −→ X′

induces another bijection Ca : Perm(X) −→ Perm(X′), simply by putting Ca(π) =
a ◦ π ◦ a−1. (You might draw a little diagram for yourself, to visualize this.) – More-
over we will need that the left-multiplication map λ : G → Perm(G) is injective.
Indeed its kernel is normal in G, and contained in G′, hence trivial, as said at the
beginning of this subsection.

(a) We explain how α turns into β. Let α be given; by assumption it induces a
bijection a : N −→ G/G′, via a(η) = α(η)(eG′). Let λ : G −→ Perm(G/G′) be
our well-known left translation map, and define

β = Ca−1 ◦ λ : G −→ Perm(G/G′) −→ Perm(N).

Then β is injective, as λ is injective (its kernel is normal in G and contained in
G′), and Ca even bijective. The stabilizer of eN under G (via β) is the stabilizer
of eG′ under G (via λ), and this is evidently G′. So the new map β is in the set
G.

(b) As a technical point, we claim and prove that Ca−1 ◦ α : N −→ Perm(N) is
the same as the left translation map λN. This comes down to checking the
commutativity of the following diagram for η ∈ N:

G/G′
α(η)

// G/G′

N
λη //

a

OO

N.

a

OO

We start with ν ∈ N in the southwest corner. For clarity, denote the class eGG′

by e. Going up and right, we get α(ν)e, and then α(η)α(ν)e. Going first right
and then up, we get ην and then α(ην)e, and this is the same.

(c) Now we explain how β turns into α. Let β : G −→ Perm(N) be given with
the indicated property. Then the orbit of eN under G must be all of N, since
G′ is the stabilizer of eN and the sets N and G/G′ have the same cardinality.
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This gives rise to a new bijection b : G/G′ −→ N via gG′ 7−→ β(g)eN. As
above, this induces the bijection Cb : Perm(G/G′) −→ Perm(N), and we
put α = Cb−1 ◦ λN : N −→ Perm(N) −→ Perm(G/G′). Again, we get
immediately that the map α is injective. The image α(N) is simply transitive,
because ΛN is a simply transitive subgroup of Perm(N). Therefore α ∈ N as
required.

(d) The two constructions, from α to β, are mutually inverse: here we will be a bit
shorter, and just say that if α leads to β, then the described bijections a and b
are inverses of each other, and this is enough for checking that then β leads
back to α.

(e) Now comes the final and central point: the equivalence of the additional prop-
erty of α with that of β. – Assume first that α(N) is normalized by ΛG, and β is
constructed out of α as explained in step (1) above. Then Ca−1α(N) is normal-
ized by Ca−1ΛG = β(G); by (2) we have Ca−1α(N) = λ(N), and so λ(N) is
normalized by β(G). By the proposition above (before the theorem), we con-
clude that β(G) ⊂ Hol(N). – Now assume that β is given, α is derived from it
as explained in (c), and that β(G) ⊂ Hol(N). This says: λ(N) is normalized by
β(G). Quite similarly as just before, this gives that Cb−1λ(N) is normalized by
Cb−1β(G). The former is α(N) by construction; the latter is λ(G), by the same
technical argument as in (b) above. This shows the required extra condition on
α.

Example 2.3.8. Let L/K be Galois in the classical sense. Then L̃ = L; G = Gal(L/K),
and G′ is trivial. This situation will be studied a lot later, but for now let us assume
that G has order p (a prime number). We claim that there is only one Hopf-Galois
structure for L/K. Indeed: in Byott’s translation, the “other” group N must also be
(cyclic) of order p. Therefore G must embed in Hol(N), which is known to us: it is
the semidirect product of an order p group (which is normal) by a group or order
p − 1. Hence the p-Sylow subgroup of Hol(N) is normal, and unique, so there is
only one choice for G. Thus there is only one choice on the other side (GP theory) as
well, and it must be the classical one.

Example 2.3.9. Let N = C2 × C2 (the non-cyclic group of order 4, which can also
be seen as the two-dimensional F2-vectorspace). Then Aut(N) = GL2(F2) is non-
abelian of order 6, and Hol(N) has order 24. As Perm(N) has only 24 elements as
well, we have Hol(N) = Perm(N). If we identify Perm(N) with S4 (the details do
not matter), any 4-cycle in Hol(N) generates a simply transitive subgroup G. That
is: Every cyclic extension L/K of degree 4 admits a Hopf-Galois structure in which
the involved group N is (of order 4 of course but) non-cyclic.

To finish this section we discuss a larger class of field extensions.

Theorem 2.3.10. Assume [L : K] is a prime number p, and let G = Gal(L̃/K) as usual.
Then L/K admits a Hopf-Galois structure if and only if G is solvable, and the latter happens
exactly if G is a semidirect product C ⋊ ∆, where C is of order p and ∆ is a cyclic group of
order dividing p− 1.
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Proof. Assume that L/K has a Hopf-Galois structure. The group N such that G
embeds into Hol(N) is also of order p, so Hol(N) is our old acquaintance Z/pZ ⋊
Z/pZ∗, which is solvable. Hence G is also solvable, as a subgroup of a solvable
group. Conversely, assume that G is solvable. By general Galois theory, G is a
transitive subgroup of Sp, and (in particular) p divides |G|. By the Sylow theorem G
contains a subgroup P of order p.

The following result is due to Galois; it is mentioned but not proved in the book
of Childs [Chi00]. We will give a proof at the end of the section. Here is the state-
ment.

Theorem 2.3.11 (Galois). A solvable subgroup G of Sp that contains an order p subgroup
P is already contained in the normalizer of P, which can be identified with the holomorph of
P.

Now we assume the validity of the theorem: this shows our Galois group G lies
between P and Hol(P), for a cyclic group P, and then we only have to take N = P
and appeal to the Byott translation.

Proof. (of Theorem 2.3.11.) Assume the contrary, that is, P is not normal in G. As p2

does not divide |Sp|, the subgroup P is a p-Sylow subgroup; if it is not normal, then
G contains two (or more) subgroups of order p. The case |G| = p (hence G = P)
cannot occur. As G is solvable, G then contains a nontrivial subgroup H which is
normal. Under the action of H, the set {1, . . . , p} splits up into disjoint orbits, which
cannot all be trivial (singletons). On the other hand, G acts transitively on this orbit
decomposition, so all H-orbits are of the same length. As p is prime, this is only
possible if there is only one orbit, in other words: already H is transitive. Hence p
divides |H|, and we can pick an order-p subgroup P′ in H. Then P′ is G-conjugate
to all subgroups of order p in G, and there is more than one of them. As P′ ⊂ H and
H is normal, all these conjugates lie already in H. We have shown: the statement
“more than one subgroup of order p” is inherited from G down to H. But H is
strictly smaller, and we may repeat the argument indefinitely. As our groups are
finite, this is a contradiction.

4 The Greither-Pareigis correspondence revisited

This section revolves around Theorem 2.2.16, the one commonly known as Greither-
Pareigis theorem. In a few lines, if K is a field with algebraic closure K and Γ =
Gal(K/K), the theorem establishes that the equivalence from Section 2.1 between
the categoriesAK (finite-dimensional commutative K-algebras without nilpotent el-
ements) and SΓ (finite Γ-sets) defined by the maps Φ and Ψ restricts to a bijective
correspondence between the Hopf-Galois structures on a separable extension of K
with fixed subgroup Γ′ and the simply transitive subgroups of Perm(Γ/Γ′) normal-
ized by left translations of Γ/Γ′. Most of the importance in this result lies in the
fact that it ties the determination of Hopf-Galois structures on separable extensions
with group theory. In this section, we will reformulate the theorem in a way that
is more convenient for many applications, and we shall see the explicit form of the
correspondence.
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4.1 An alternative glance to the main theorem

We start by rewriting Theorem 2.2.16 in a convenient way to work with.
Let L/K be a separable field extension with algebraic closure K. Call Γ = Gal(K/K)

and Γ′ = Gal(L/L). As already mentioned, Greither-Pareigis theorem establishes
an one-to-one correspondence between Hopf-Galois structures on L/K and the sub-
groups of Perm(Γ/Γ′) that are simply transitive and normalized by the set Λ of left
translations by elements γ ∈ Γ.

First, simply transitive subgroups of Perm(Γ/Γ′) are, by definition, those whose
group action on Γ/Γ′ is simply transitive. From now on, we shall refer to such
subgroups as regular. For later use, we see some characterizations of this concept.

Proposition 2.4.1. Let X be a finite set and let N be a subgroup of Perm(X). Consider the
group action of N on X defined by evaluation. If two of the following three conditions are
satisfied, so is the other one.

1. |N| = |X|.

2. N acts transitively on X.

3. Given x ∈ X, StabN(x) = {η ∈ N | η(x) = x} = {1N}.

Proof. Fix x ∈ X. By the orbit-stabilizer theorem, we have |N| = |Orb(x)| |StabN(x)|.
Now, let us note that 2 is equivalent to |Orb(x)| = |X| and 3 is equivalent to
|StabN(x)| = 1. Then the statement follows immediately.

If X is a finite set and N is a subgroup of Perm(X), for each x ∈ X we consider
the map φx : N −→ X defined by φx(η) = η · x.

Proposition 2.4.2. Let X be a finite set and let N be a subgroup of Perm(X). The following
conditions are equivalent.

1. N is a regular subgroup of Perm(X).

2. Two of the conditions from Proposition 2.4.1 are satisfied.

3. The conditions from Proposition 2.4.1 are satisfied.

4. There is some x ∈ X such that φx is bijective.

5. For every x ∈ X, φx is bijective.

Proof. The equivalence between 2 and 3 has been already shown in Proposition 2.4.1.
Suppose that 1 holds, so that N acts simply transitively on X. In particular, the

action is transitive. Let us fix x ∈ X. Then, for each y ∈ X there is a unique ηy ∈ N
such that ηy(x) = y. By the uniqueness, the ηy define |X| different elements in N,
and they are all the elements of N (given η ∈ N, η = ηη(x)), so |N| = |X|. Hence 2
is satisfied. Conversely, assume that 3 holds. Let x, y ∈ X. Since N acts transitively
on X, there is η ∈ N such that η(x) = y. Suppose that µ ∈ N is such that µ(x) = y.
Then η(x) = µ(x), whence η−1µ(x) = x, that is, η−1µ ∈ StabN(x) = {1N}. Hence
η = µ, proving that the action is simply transitive.

Let us prove that 1 and 5 are equivalent. Given x ∈ X, we have that the map φx
is bijective if and only if there is a unique η ∈ N such that η · x = y, whence the
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claim follows. On the other hand, it is trivial that 5 implies 4. Finally, assume that
4 is satisfied, so that for some x ∈ X, φx is bijective. Then for each y ∈ X there is a
unique η ∈ N such that η · x = y, so N acts simply transitively on X and 1 holds.

On the other hand, in Section 3, we have used an alternative quotient set G/G′

of Galois groups, that comes from choosing the normal closure of our separable
extension L/K, instead of its algebraic closure. This is valid because the left cosets
of Γ/Γ′ and G/G′ can be identified. In the following we offer a complete proof for
the validity of this step.

Proposition 2.4.3. Let L/K be a finite and separable extension of fields and let E/K be a
Galois extension with L ⊂ E. Call GE = Gal(E/K) and G′E = Gal(E/L). The Hopf-
Galois structures on L/K are in bijective correspondence with the regular subgroups of
Perm(GE/G′E) normalized by the set Λ of left translations by elements g ∈ G.

Proof. We know by Theorem 2.2.16 that the Hopf-Galois structures on L/K are in
bijective correspondence with the regular subgroups of Perm(Γ/Γ′) normalized by
the set Λ of left translations by elements γ ∈ Γ. We shall prove that the latter are in
bijective correspondence with the regular subgroups of Perm(GE/G′E) normalized
by Λ, whence the statement will follow.

Since E/K is Galois, by Theorem 1.1.58, G(E) := Gal(L/E) is a normal subgroup
of Γ and the restriction maps Γ −→ GE, Γ′ −→ G′E induce group isomorphisms

Γ/G(E) ∼= GE, Γ′/G(E) ∼= G′E.

Then, the map φ : Γ/Γ′ −→ GE/G′E defined by φ(γΓ′) = γ |E G′E is bijective.
At the same time, such a map induces a group isomorphism Φ : Perm(Γ/Γ′) −→
Perm(GE/G′E) defined as Φ(η)(φ(γΓ′)) = φ(η(γΓ′)). It is enough to check that a
subgroup of Perm(Γ/Γ′) is regular and normalized by Λ if and only if it is mapped
by Φ to a regular subgroup of Perm(GE/G′E) normalized by Λ.

Let N be a regular subgroup of Perm(Γ/Γ′) and let us prove that Φ(N) is reg-
ular. Let a, b ∈ GE/G′E and write x = φ−1(a) and y = φ−1(b). Since N is regular
and x, y ∈ Γ/Γ′, there is a unique η ∈ N such that η(x) = y. Now, Φ(η)(a) =
Φ(η)(φ(x)) = φ(η(x)) = φ(y) = b. The uniqueness of Φ(η) follows from the
bijectivity of Φ. Hence Φ(N) is regular. The converse is proved in the same way.

Let N be a subgroup of Perm(Γ/Γ′) normalized by Λ. Given γ, µ ∈ Γ, we have

λγ|E ◦ φ(µΓ′) = λγ|E(µ |E G′E) = (γµ) |E G′E = φ(γµΓ′) = φ ◦ λγ(µΓ′).

Since µ is arbitrary, we obtain that λγ|E ◦ φ = φ ◦ λγ. Let us check that λγ|E ◦Φ(N) ◦
λ−1

γ|E
⊆ Φ(N). Let η ∈ N. For an arbitrary g ∈ GE, let µ ∈ Γ be such that g = µ |E.

Then

λγ|E ◦Φ(η) ◦ λ−1
γ|E

(gG′E) = λγ|E ◦Φ(η)((γ−1µ) |E G′E)

= λγ|E ◦Φ(η)(φ(γ−1µΓ′))

= λγ|E ◦ φ ◦ η(γ−1µΓ′)

= φ ◦ λγ ◦ η ◦ λγ−1(µΓ′)

= Φ(λγ ◦ η ◦ λγ−1)(φ(µΓ′))

= Φ(λγ ◦ η ◦ λγ−1)(gG′E).
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Since g is arbitrary, λγ|E ◦Φ(γ) ◦ λ−1
γ|E

= Φ(λγ ◦ η ◦ λγ−1). Now, since N is normal-
ized by left translations by hypothesis, we have λγ ◦ η ◦ λγ−1 ∈ N, so λγ|E ◦Φ(γ) ◦
λ−1

γ|E
∈ Φ(N), as we wanted. We conclude that Φ(N) is normalized by Λ. The

converse is proved likewise.

Proposition 2.4.3 means that, in order to characterize Hopf-Galois structures on
a separable extension L/K in terms of permutation subgroups, instead of choosing
an algebraic closure to construct the Galois groups Γ and Γ′, we can just choose any
finite and Galois extension of E containing L, and choose the corresponding Galois
groups GE and G′E.

The remaining ingredient concerning Theorem 2.2.16 is left translations of Γ/Γ′.
We have proved in Proposition 2.4.3 that, for any Galois extension E of K containing
L, we can consider instead the set of left translations λg : hG′E 7→ ghG′E of GE/G′E,
where GE and G′E are in the statement of that result. We can regard this as the image
of a map.

Definition 2.4.4. Let L/K be a finite and separable extension, let E/K be a Galois extension
with L ⊂ E and acquire the above notation. The left translation map of L/K associated
to E is the map

λE : GE −→ GE/G′E
g −→ hG′E 7→ ghG′E

The left translation map is not in general injective, and its kernel can be charac-
terized in terms of group theory.

Definition 2.4.5. Let G be a group and let G′ be a subgroup of G. The core of G′ inside G
is defined as

CoreG(G′) =
⋂

g∈G
gG′g−1.

In other words, it is the greatest normal subgroup of G contained in G′.

Proposition 2.4.6. Let L/K be a finite and separable extension, and let E/K be a Galois
extension with L ⊆ E. Call GE = Gal(E/K), G′E = Gal(E/L), and let λE : GE −→
GE/G′E be the left translation map of L/K associated to E. Then

Ker(λE) = CoreGE(G
′
E).

Proof. Let h ∈ GE. We have that

h ∈ Ker(λE)⇐⇒ λE(h) = IdGE/G′E

⇐⇒ hgG′E = gG′E for all g ∈ GE

⇐⇒ g−1hgG′E = G′E for all g ∈ GE

⇐⇒ h ∈ gG′Eg−1 for all g ∈ GE

⇐⇒ h ∈ CoreGE(G
′
E)
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Let L/K be a finite and separable field extension. Note that the smallest field E
such that L ⊂ E is by definition the normal closure L̃ of L/K. This will be our pre-
ferred choice when we make use of Greither-Pareigis theorem. Call G = Gal(L̃/K)
and G′ = Gal(L̃/L). In short, we will say that L/K is (G, G′)-separable or G-separable.
In this case, the left translation map λ : G −→ G/G′ of L/K associated to L̃ is simply
called the left translation map of L/K. If no more quotient groups arise, we will nor-
mally write left cosets of G/G′ as g for a representative g ∈ G. Thus, for g, h ∈ G,
λ(g)(h) = λg(h) = gh.

Corollary 2.4.7. The left translation map λ of a (G, G′)-separable extension L/K is injec-
tive.

Proof. We know from Proposition 2.4.6 that Ker(λ) = CoreG(G′), which is by defini-
tion the greatest normal subgroup of G contained in G′. By definition of normal clo-
sure, L̃ is the smallest Galois field extension of K containing L. In other words, there
are no Galois extensions of K containing L and properly contained in L̃. Applying
the Galois correspondence, we get that there are no non-trivial normal subgroups of
G contained in G′. That is, CoreG(G′) = {1G}, proving the statement.

Let us focus on the normality condition for a permutation subgroup at the Greither-
Pareigis correspondence. Let L/K be a (G, G′)-separable extension and let λ : G −→
Perm(G/G′) be its left translation map. Since λ is injective, G is isomorphic with
its image λ(G), which is a subgroup of Perm(G/G′). We have an action of G on
Perm(G/G′) by letting λ(G) act by conjugation:

g · η := λ(g)ηλ(g−1), η ∈ Perm(G/G′).

The condition that a subgroup N of Perm(G/G′) is normalized by the left transla-
tions is just that this action restricts to N.

Definition 2.4.8. Let N be a subgroup of Perm(G/G′). We say that N is G-stable, or
that N is normalized by λ(G), if for every g ∈ G and η ∈ N,

λ(g)ηλ(g−1) ∈ N,

that is, λ(G) acts on N by conjugation.

Under this terminology, we can restate Theorem 2.2.16 as follows.

Theorem 2.4.9. Let L/K be a (G, G′)-separable extension. Then, there is a bijective corre-
spondence between:

1. The Hopf-Galois structures on L/K.

2. The regular and G-stable subgroups of Perm(G/G′).

We also give a term for an concept that has already appeared; namely, the isomor-
phism class of a permutation subgroup corresponding to a Hopf-Galois structure on
a separable extension.

Definition 2.4.10. The type of a Hopf-Galois structure H on a (G, G′)-separable extension
is defined as the isomorphism class of the subgroup N of Perm(G/G′) corresponding to H
under the Greither-Pareigis correspondence. We denote it by [N].

We can classify Hopf-Galois structures on a separable extension according to
their type. We saw that Byott’s translation allows us to count Hopf-Galois structures
of a given type on a separable extension.
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4.2 The explicit form of the correspondence

Let L/K be a (G, G′)-separable extension with normal closure L̃. In this part we de-
scribe the definition of the bijective (and inverse-to-each-other) maps involved in the
Greither-Pareigis correspondence. The following establishes a first relation between
a Hopf-Galois structure H on L/K and its corresponding permutation subgroup N.

Proposition 2.4.11 ([GP87], Proposition 1.3). Let L/K be a (G, G′)-separable extension
with normal closure L̃. Let H be a Hopf-Galois structure on L/K and let N be its cor-
responding regular and G-stable subgroup of Perm(G/G′). Then L̃ ⊗K H ∼= L̃[N] as
L̃-Hopf algebras.

First, we see how to recover H from N. To do so, we need some notions from
Galois descent theory. First, it is easy to check that the K-Hopf algebras together
with the homomorphisms of K-Hopf algebras form a category. The same is true for
L̃-Hopf algebras, but we shall consider a smaller category inside.

Let M be an L̃-Hopf algebra. An L̃-semilinear action of G on M is defined as a
map ∗ : L̃[G]⊗L̃ M −→ M such that for every g ∈ G, the map g ∗ − : M −→ M is
L̃-semilinear, that is, there is some field automorphism σg ∈ Aut(L) such that

g ∗ (λm) = σg(λ)g ∗m, λ ∈ L̃, m ∈ M.

If there are L̃-semilinear actions of G on L̃-Hopf algebras M, M′ respectively, an
L̃-linear map f : M −→ M′ is said to be G-equivariant if

g ∗ f (m) = f (g ∗m), g ∈ G, m ∈ M.

Definition 2.4.12. Let M be an L̃-Hopf algebra endowed with an L̃-semilinear action from
G. Consider the induced L̃-semilinear action of G on M⊗L̃ M as

g ∗ (m⊗m′) := (g ∗m)⊗ (g ∗m′), g ∈ G, m, m′ ∈ M.

We say that M is G-compatible if all the Hopf algebra operations of M are G-equivariant
maps.

The G-compatible L̃-Hopf algebras form a category where the morphisms are the
G-equivariant L̃-Hopf algebra homomorphisms.

Definition 2.4.13. Let M be a G-compatible L̃-Hopf algebra and write ∗ for the action of G
on M. The sub-Hopf algebra of M fixed by G is

MG := {m ∈ M | g ∗m = m}.

The main result for our purposes is the following:

Theorem 2.4.14. Let L/K be a separable extension with normal closure L̃ and let G =

Gal(L̃/K).

1. If H is a K-Hopf algebra, then L̃⊗K H is a G-compatible L̃-Hopf algebra.

2. If M is a G-compatible L̃-Hopf algebra, then MG is a K-Hopf algebra.
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Moreover, these assignments define an equivalence of categories between the category of K-
Hopf algebras and the category of G-compatible L̃-Hopf algebras.

This is explained at [Chi00, Paragraph before (2.13)].
As a consequence, for a G-compatible L̃-Hopf algebra M, L̃ ⊗ MG ∼= M as G-

compatible L̃-Hopf algebras. Likewise, for a K-Hopf algebra H, (L̃⊗K H)G ∼= H as
K-Hopf algebras.

Let N be a regular and G-stable subgroup of Perm(G/G′). Let λ be the left
translation map of L/K. That N is G-stable means that N is normalized by λ(G),
or equivalently, the conjugation action of G on Perm(G/G′) leaves N invariant. We
can easily extend this action to an L̃-semilinear action of G on L̃[N] by letting G act
on L̃ by means of the usual Galois action and on N by the action above. Explicitly,

g ∗
( n

∑
i=1

hiηi

)
=

n

∑
i=1

g(hi)λ(g)ηiλ(g−1), (2.1)

where g ∈ G, n ∈ Z>0 and, for each 1 ≤ i ≤ n, ai ∈ L̃ and ηi ∈ N. This is indeed
semilinear: if g ∈ G, λ ∈ L̃ and h = ∑n

i=1 hiηi ∈ L̃[N], then

g ∗ (λh) = g ∗
( n

∑
i=1

λhiηi

)
=

n

∑
i=1

g(λ)g(hi)λ(g)ηiλ(g−1) = g(λ)g ∗ h.

Proposition 2.4.15. Let L/K be a (G, G′)-separable extension with normal closure L̃. If
N is a regular and G-stable subgroup of Perm(G/G′), the L̃-group algebra L̃[N] is a G-
compatible L̃-Hopf algebra with respect to the action ∗ of G on L̃[N] defined at (2.1).

Proof. We need to check that the Hopf algebra operations of L̃[N] are G-equivariant.

• Multiplication: Given h = ∑n
i=1 hiηi, h′ = ∑n

j=1 h′jηj ∈ L̃[N] and g ∈ G,

g ∗mL̃[N](h⊗ h′) = g ∗
n

∑
i,j=1

hih′jηiηj

=
n

∑
i,j=1

g(hih′j)λ(g)ηiηjλ(g−1)

=
n

∑
i,j=1

g(hi)g(h′j)λ(g)ηiλ(g−1)λ(g)ηjλ(g−1)

=
( n

∑
i=1

g(hi)λ(g)ηiλ(g−1)
)( n

∑
j=1

g(h′j)λ(g)ηjλ(g−1)
)

= (g ∗ h)(g ∗ h′)
= mL̃[N]((g ∗ h)⊗ (g ∗ h′))

= mL̃[N](g ∗ (h⊗ h′))

(2.2)

• Unit: Given r ∈ K and g ∈ G,

g ∗ uK[G](r) = g ∗ (r1G) = r1G = uK[G](g ∗ r).
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• Comultiplication: Let h = ∑n
i=1 hiηi ∈ L̃[N] and g ∈ G. Then,

g ∗ ∆L̃[N](h) = g ∗
( n

∑
i=1

hiηi ⊗ ηi

)
=

n

∑
i=1

g(hi)λ(g)ηiλ(g−1)⊗ λ(g)ηiλ(g−1)

= ∆L̃[N]

( n

∑
i=1

g(hi)λ(g)ηiλ(g−1)
)

= ∆L̃[N](g ∗ h).

• Counit: For h = ∑n
i=1 hiηi ∈ L̃[N] and g ∈ G, we have

g ∗ ε L̃[N](h) = g ∗
( n

∑
i=1

hi

)
=

n

∑
i=1

g(hi) = ε L̃[N](g ∗ h)

• Coinverse: Again, given h = ∑n
i=1 hiηi ∈ L̃[N] and g ∈ G, we have

g ∗ SL̃[N](h) = g ∗
n

∑
i=1

hiη
−1
i

=
n

∑
i=1

g(hi)λ(g)η−1
i λ(g−1)

=
n

∑
i=1

g(hi)(λ(g)ηiλ(g−1))−1

= SL̃[N](g ∗ h).

Taking into account Proposition 2.4.11, we obtain an explicit description for the
underlying Hopf algebra. The action is also obtained by descent. We summarize
what we get at the following.

Proposition 2.4.16. Let L/K be a (G, G′)-separable extension and let N be a regular and
G-stable subgroup of Perm(G/G′). Let H be the Hopf-Galois structure on L/K that corre-
sponds to N under the Greither-Pareigis correspondence.

1. The underlying Hopf algebra of H is

L̃[N]G = {h ∈ L̃[N] | g ∗ h = h for all g ∈ G}.

2. The action of H on L is given as follows: For h = ∑n
i=1 hiηi ∈ H and α ∈ L,

h · α =
n

∑
i=1

hiη
−1
i (1)(α), (2.3)

where for each 1 ≤ i ≤ n, η−1
i (1)(α) is the image of α by a representative g of the left

coset η−1
i (1) ∈ G/G′.
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.
Let us check that the expression 2.3 is well defined. Take two representatives

g, k ∈ G of the left coset η−1
i (1) and an element α ∈ L. Since g and k belong to the

same left coset, g−1k ∈ G′ = Gal(L̃/L), so α = g−1k(α), that is, g(α) = k(α).
The correspondence in the converse direction follows easily from Proposition

2.4.11. Indeed, if H is a Hopf-Galois structure on a separable extension L/K with
normal closure L̃ and N is its corresponding subgroup, we have that L̃⊗K H ∼= L̃[N]

as L̃-Hopf algebras. By Corollary 1.2.19, N can be regarded as the group of grouplike
elements of L̃⊗K H.

4.3 The Greither-Pareigis theorem for Galois extensions

In this section we deepen in the specification of Greither-Pareigis theorem for Galois
extensions from Section 2.4 so as to visualize the group-theoretical description of all
their Hopf-Galois structures.

Let L/K be a Galois extension with group G. We know that K[G] together with
its classical action on L is a Hopf-Galois structure on L/K. We will often refer to this
as the classical Galois structure.

By definition, the normal closure of L/K is L̃ = L. Thus, in this case, the groups
G and G′ appearing at the statement of Theorem 2.4.9 are G = Gal(L/K) and G′ =
{IdG}. In other words, L/K is (G, {IdG})-separable. Thus, Theorem 2.4.9 becomes:

Theorem 2.4.17. Let L/K be a Galois extension with group G. There is a bijective corre-
spondence between:

• The regular and G-stable subgroups of Perm(G).

• The Hopf-Galois structures on L/K.

Let us specify what G-stable means in the Galois case. Following Definition 2.4.8,
a subgroup N ≤ Perm(G) is G-stable if the action of G on Perm(G) leaves N invari-
ant. Such an action is defined by conjugation with the image of G by the left trans-
lation of L/K from Definition 2.4.4. Since G′ = {1G}, the left translation becomes

λ : G −→ Perm(G),
g 7−→ λ(g)(h) = gh,

which is nothing but the left regular representation of G into Perm(G). Thus, N
being G-stable is just the condition that N is normalized by λ(G).

The absence of G′ allows us to consider an analogous map by the right side.

Definition 2.4.18. Let L/K be a Galois extension with group G. The right regular repre-
sentation of L/K is defined as the one of G, that is,

ρ : G −→ Perm(G),
g 7−→ ρ(g)(h) = hg−1.

The right regular representation ρ is clearly injective, as in the case of λ. In fact,
ρ(G) is the group of the right translations. Under this language, we have the follow-
ing.
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Proposition 2.4.19. Let G be a group.

1. λ(G) and ρ(G) are regular subgroups of Perm(G).

2. ρ(G) is centralized by λ(G).

3. ρ(G) = λ(G) if and only if G is abelian.

As a consequence, λ(G) and ρ(G) are regular and G-stable subgroups, therefore
giving Hopf-Galois structures on L/K.

Proposition 2.4.20 ([Chi00], (6.10)). Let L/K be a Galois extension with group G. Then
ρ(G), as a regular and G-stable subgroup of Perm(G), corresponds to the classical Galois
structure (K[G], ·) on L/K.

By Proposition 2.4.19 3, when G is abelian, λ(G) and ρ(G) give the same Hopf-
Galois structure; otherwise they give two different Hopf-Galois structures.

Definition 2.4.21. Let L/K be a Galois extension with group G and suppose that G is not
abelian. The Hopf-Galois structure on L/K corresponding to λ(G) is called the canonical
non-classical structure.

When both Hopf-Galois structures arise, we shall use the label Hc for the classical
Galois structure, and write Hλ for the canonical non-classical structure.

4.4 An example of application

Let L = Q(α), where α is a root of the polynomial f (x) = x3− 3x + 3. Let us find all
the Hopf-Galois structures on L/Q using Greither-Pareigis theorem.

First, we identify the groups G and G′. Since [L : K] = 3, G can be embedded as a
transitive subgroup of S3 = D3, namely, G ∼= C3 or G ∼= D3. Since the discriminant
of f is disc( f ) = −135 = −33 · 5, which is not a square, we obtain that G ∼= D3.
Therefore, G can be presented as

G = ⟨σ, τ | σ3 = τ2 = 1G, τσ = σ2τ⟩.

Under the Galois correspondence, L maps to G′ = Gal(L̃/L), and since [L : K] =
[G : G′], G′ is an order 2 subgroup of G. The order 2 subgroups of G are ⟨τ⟩, ⟨στ⟩
and ⟨σ2τ⟩; we can assume without loss of generality that G′ = {τ}.

Let us describe how σ and τ act on L̃. We have L̃ = Q(α, z) for z =
√
−15, so it is

enough to give the images of α and z (since the definition in the other elements of L̃
is given by extension by Q-linearity). We know that σ can be seen as a permutation
of the roots of f , so σ(α) is just one of the other two roots of f . This would give
two possibilities for σ, among which there is free choice (exchange of the other two
roots of f means replacement of σ by σ2). On the other hand, let M = Q(z), which
is a subfield of L̃ that is quadratic over Q. Then, under the Galois correspondence it
yields an order 3 subgroup of G, but the only one is ⟨σ⟩. Therefore, Gal(L̃/M) = ⟨σ⟩,
whence σ(z) = z. As for τ, the equality G′ = ⟨τ⟩ gives τ(α) = α, and τ(z) = −z
follows from the fact that z2 ∈ Q.

By Greither-Pareigis theorem, the Hopf-Galois structures on L/Q are in bijective
correspondence with the regular subgroups of Perm(G/G′) normalized by λ(G).
We have

G/G′ = {1G, σ, σ2}, σi = {σi, σiτ}, i = 0, 1, 2.
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On the other hand, the left translation map of L/K is the map λ : G −→ Perm(G/G′)
defined by λ(σi)(σj) = σi+j.

Let us find the regular subgroups of Perm(G/G′), which in particular have order
3. Since |G/G′| = 3, Perm(G/G′) ∼= S3 = D3, the dihedral group of order 6. This
possesses a unique order 3 subgroup

N := {IdG/G′ , (1G, σ, σ2), (1G, σ2, σ)}.
This is regular, as it is easy to check that its action on G/G′ is transitive.

Thus, N defined as above is the only regular subgroup of Perm(G/G′). Note that
N = λ(J), and this is normalized by λ(G) because J is a normal subgroup of G and λ
is injective. Therefore, N is the only regular and G-stable subgroup of Perm(G/G′),
and hence, L/K admits a unique Hopf-Galois structure H. Let us determine it.

We begin with the underlying Hopf algebra. Let · be the action of G on L̃[N]

given by the classical Galois action on L̃ and by conjugation with λ(G) on N. Then,
the underlying Hopf algebra H is formed by the elements of L̃[N] that are fixed by
this action. Pick h ∈ L̃[N]G, so h = ∑2

i=0 aiλ(σ
i) for some ai ∈ L̃ and g · h = h for all

g ∈ G. It is enough to study the action of the generators σ and τ of G. We have that

σ ∗ λ(σi) = λ(σσiσ−1) = λ(σi), i = 1, 2, 3,

so

h = σ ∗ h =
2

∑
i=0

σ(ai)λ(σ
i).

By the uniqueness of coordinates, ai = σ(ai) for all i, whence ai ∈ L̃⟨σ⟩ = M. On the
other hand,

τ ∗ λ(σi) = λ(τσiτ−1) = λ(σ−i), i = 1, 2, 3,

whence
h = τ ∗ h = τ(a0)1G/G′ + τ(a2)λ(σ) + τ(a1)λ(σ

2).

We deduce that a0 ∈ L̃⟨τ⟩ = L, so a0 ∈ L ∩M = Q, and τ(a1) = a2, τ(a2) = a1 (even
though the second equality is redundant because τ is of order 2). Since a1 ∈ M =
Q(z), there are b, c ∈ Q such that a1 = b+ cz. Applying τ we obtain that a2 = b− cz.
Let us relabel a0 = a. Then

h = a0IdG/G′ + a1λ(σ) + a2λ(σ2)

= aIdG/G′ + (b + cz)λ(σ) + (b− cz)λ(σ2)

= aIdG/G′ + b(λ(σ) + λ(σ2)) + cz(λ(σ)− λ(σ2))

Hence, h lies in the subspace of L̃[N] generated by 1G/G′ , λ(σ) + λ(σ2) and z(λ(σ)−
λ(σ2)). Since h ∈ H is arbitrary, H is contained in such a subspace. But both H and
the subspace have dimension 3 over Q, so they coincide. In other words, H has
Q-basis

{1G/G′ , λ(σ) + λ(σ2), z(λ(σ)− λ(σ2))}.
Finally, let us determine the action of H on L. Of course, it is enough to find it on

the basis elements of H, and for 1G/G′ , it is trivial. Therefore, we are left to find how
λ(σ) + λ(σ2) and z(λ(σ)− λ(σ2)) act on elements of L. Given x ∈ L,

(λ(σ)+λ(σ2)) · x = λ(σ)−1(IdG)(x)+λ(σ2)−1(IdG)(x) = σ2(x)+σ(x) = (σ+σ2)(x),

z(λ(σ)− λ(σ2)) · x = z(σ2(x)− σ(x)) = −z(σ− σ2)(x).
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5 Further applications of Greither-Pareigis theory

5.1 Almost classically Galois extensions revisited

In Section 3.1 we introduced the class of finite separable extensions L/K for which
one can find a normal extension M/K such that L ∩M = K and the compositum of
L and M is just the normal closure L̃ of L/K. These extensions are usually called al-
most classically Galois in literature. Furthermore, it has been shown in Proposition
2.3.1 that such extensions are Hopf-Galois. In this section we consider them under
the reformulation introduced in Section 4 and deepen in their properties.

First, let us view a notion that arises in the situation of an almost classically
Galois extension, which we will find very often in the sequel.

Definition 2.5.1. Let K be a field and let L and M be field extensions of K with L, M ⊂ K.
We say that L/K and M/K are linearly disjoint (or that L and M are K-linearly disjoint) if
the map

L⊗K M −→ LM
x⊗ y 7−→ xy

is an isomorphism of K-algebras.

Note that the map at Definition 2.5.1 is always an epimorphism of K-algebras.
The fact that two field extensions L/K, M/K are linearly disjoint means that for
x, x′ ∈ L and y, y′ ∈ M, xy = x′y′ if and only if there is some non-zero r ∈ K such
that x′ = rx and y = ry′ (actually, the latter is implied by the former). The intuition
is that at the compositum of L and M, no elements of either field are collapsed. This
phenomenon can be visualized through the following result:

Proposition 2.5.2. If two field extensions L/K and M/K are linearly disjoint, then L ∩
M = K. Moreover, if either of the extensions is separable and either (possibly the same)
normal, the converse holds.

Proof. The first part is easy and left as exercise. For the converse, see [Coh91, Chap-
ter 5, Theorem 5.5].

In particular, two extensions L/K and M/K with M/K Galois are linearly dis-
joint if and only if L ∩M = K.

We study several equivalent definitions of an almost classically Galois extension.

Theorem 2.5.3. Let L/K be a (G, G′)-separable extension. The following statements are
equivalent:

1. L/K is almost classically Galois.

2. There is some finite and Galois extension M/K such that L⊗K M ∼= L̃ as K-algebras.

3. There is some finite and Galois extension M/K such that L⊗K M is isomorphic as a
K-algebra to a field containing L̃.

4. There is some normal complement J for G′ in G.

5. There is a regular and G-stable subgroup N of Perm(G/G′) such that N ⊂ λ(G),
where λ : G −→ Perm(G/G′) is the left translation map of L/K.
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Proof. Suppose that L/K is almost classically Galois, so that there is a Galois exten-
sion M/K such that L∩M = K and LM = L̃. Since M/K is Galois, from Proposition
2.5.2 we see that L⊗K M ∼= L̃ as K-algebras. Conversely, assume that there is a Ga-
lois extension M/K such that L⊗K M ∼= L̃ as K-algebras; in particular, L⊗K M is a
field. Taking into account the definition of the multiplication at L⊗K M, necessarily
L⊗K M ∼= LM as K-algebras. Together with the previous isomorphism, we obtain
L̃ = LM and the map at Definition 2.5.1 is an isomorphism of K-algebras, so L/K is
almost classically Galois.

It is trivial that 2 implies 3. Let us prove the converse. Let M/K be a Galois
extension such that L ⊗K M is a field and L̃ ↪→ L ⊗K M as K-algebras. We shall
prove that M/K can be shrunk to a Galois extension M′/K such that L⊗K M′ ∼= L̃
as K-algebras (see [GP87, Proof of Theorem 2.5]). Since L⊗K M is a field, arguing
as above, L ⊗K M ∼= LM as K-algebras, so L̃ ⊆ LM. Now, by definition, L̃M is a
field containing L and M, so LM ⊆ L̃M. Joining both inclusions, we have LM =

L̃M, proving that LM/K is Galois. Hence, so are the extensions LM/L̃, LM/L and
LM/M. Call Γ = Gal(LM/K), Γ = Gal(LM/L̃), ΓL = Gal(LM/L) and ΓM =
Gal(LM/M). Since the lattice of subgroups of Γ is distributive with respect to the
product and the intersection of subgroups and Γ ⊆ ΓL, Γ(ΓL ∩ ΓM) = (Γ · ΓL) ∩
(Γ · ΓM) = ΓL ∩ (Γ · ΓM). Since the Galois correspondence is inclusion-reversing,
applying it at both sides of the equality yields

L̃ ∩ (LM) = L(L̃ ∩M).

But recall that LM contains L̃, so L̃ = L̃ ∩ (LM) = L(L̃ ∩M). Let us define M′ :=
L̃∩M. Since L̃/K and M/K are Galois, so is M′/K. Moreover, the previous equality
becomes L̃ = LM′. It remains to prove that LM′ ∼= L⊗K M′ as K-algebras, or equiv-
alently, that L and M′ are K-linearly disjoint. Since LM ∼= L ⊗K M as K-algebras,
L ∩ M = K. Moreover M′ ⊆ M, so L ∩ M′ = K. Given that M′/K is Galois, ap-
plying Proposition 2.5.2 we obtain that L/K and M′/K are linearly disjoint, as we
wanted.

Let us show that 1 and 4 are equivalent. Let M be an intermediate field of L̃/K
and let J = Gal(L̃/M). By the fundamental theorem of Galois theory, M/K is Galois
if and only if J is a normal subgroup of G. In addition, L ∩M = K and LM = L̃ if
and only if JG = G′ and J ∩G′ = {1G}. Hence, L/K is almost classically Galois with
complement M if and only if J is a normal complement for G′ in G, as we wanted.

Finally, we show the equivalence between 4 and 5. Suppose that there is a normal
complement J for G′ in G and let N := λ(J). Since J is a normal subgroup of G and λ
is a group monomorphism, N is G-stable. Let us see that the map φ1 : N −→ G/G′

defined by φ1(η) = η(1) is bijective. For σ ∈ J, φ1(λ(σ)) = λ(σ)(1) = σ. Since
G = JG′ and J ∩ G′, for each g ∈ G there are unique σ ∈ J and τ ∈ G′ such that
g = στ, so g = στ = σ. Hence, each left coset in G/G′ admits as representative a
unique element of J (we say that J is a transversal of G′ in G). This proves that φ1 is
surjective, and the bijectivity follows from |N| = |G/G′|. By Proposition 2.4.2, N is
regular.

Conversely, suppose that there is a regular and G-stable subgroup N of Perm(G/G′)
with N ⊂ λ(G). Call J := λ−1(N). Since N is G-stable, J is a normal subgroup of G.
First, let us note that for each τ ∈ G′, λ(τ)(1G) = τ = 1G. Then λ(G′) ⊂ Stabλ(G)(1).
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Now, since N is regular, we have that StabN(1) = {1N}. Hence,

N ∩ λ(G′) ⊂ N ∩ Stabλ(G)(1) = StabN(1) = {1N}.

We deduce that N ∩ λ(G′) = {1N}. Applying λ−1, we obtain J ∩ G′ = {1G}. On the
other hand, we have that Nλ(G′) ⊆ λ(G) and

|Nλ(G′)| = |N| |λ(G′)| = |G/G′| |G′| = |G| = |λ(G)|,

so Nλ(G′) = λ(G). Applying λ−1, we get JG′ = G. We conclude that J is a normal
complement for G′ in G.

For an almost classically Galois extension L/K with normal closure L̃, G =

Gal(L̃/K) and G′ = Gal(L̃/L), we will say that L/K is (G, G′)-almost classically
Galois.

Remark 2.5.4. From the proof of Proposition 2.5.3 we can see that a field M satisfies
1 if and only if it satisfies 2, and that a field satisfying either is contained in a field
satisfying 3. Moreover, a subgroup J of G satisfies 4 if and only if λ(J) satisfies 5.

We have also seen that λ(G′) ⊆ Stabλ(J)(1G), where the stabilizer corresponds
to the group action of λ(G) on G/G′ by evaluation. Since λ is an injection, we can
carry this to an action of G on G/G′. In this context, we actually prove the equality.

Corollary 2.5.5. Let L/K be an (G, G′)-almost classically Galois extension and let J be a
normal complement for G′ in G. Consider the action of G on Perm(G/G′) induced by λ.
For N = λ(J), we have

G′ = StabN(1) ≡ {g ∈ G | λ(g)(1) = 1}.

Proof. The action of G on Perm(G/G′) is defined as follows: for g ∈ G and η ∈ N,
g(η) = λ(g)(η). Now, for g ∈ G, g(1) = g, so g ∈ StabG(1) if and only if g = 1; if
and only if g ∈ G′.

It is also possible to define a notion of almost classically Galois structure.
Let L/K be a (G, G′)-separable almost classically Galois extension. By Theorem

2.5.3 5, there is some subgroup N giving a Hopf-Galois structure on L/K under the
Greither-Pareigis correspondence that in addition satisfies N ⊂ λ(G). However,
L/K might admit other Hopf-Galois structures, and so, given by subgroups that lie
outside λ(G). We give a name to those Hopf-Galois structures that come from a
normal complement.

Definition 2.5.6. Let L/K be a (G, G′)-almost classically Galois extension. We say that a
Hopf-Galois structure on L/K is almost classically Galois if its corresponding subgroup of
Perm(G/G′) under the Greither-Pareigis correspondence satisfies N ⊂ λ(G).

We have from Theorem 2.5.3 5 that every almost classically Galois extension ad-
mits some almost classically Galois structure H. Let N be the corresponding per-
mutation subgroup, so that N ⊂ λ(G). Since λ is a group embedding, we have that
N = λ(J) for some normal subgroup J of G. This may be a normal complement of
G′, but not necessarily.
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Example 2.5.7. Let L/K be a (G, G′)-separable extension with G ∼= D4 and G′ ∼= C2.
Then L/K is almost classically Galois because G = J ⋊ G′ with J ∼= C4. Call J = ⟨σ |
σ4 = 1G⟩ and G′ = ⟨τ | τ2 = 1G⟩, so that

G = ⟨σ, τ | σ4 = 1G, τ2 = 1G, τσ = σ3τ⟩.

It can be checked that the regular and G-stable subgroups of Perm(G/G′) are:

N = ⟨(1, σ, σ2, σ3)⟩,

N′ = ⟨(1, σ)(σ2, σ3), (1, σ2)(σ, σ3)⟩.
Note that N = λ(J) and N′ = λ(J′) with J′ = ⟨σ2, στ⟩. Both J and J′ are normal
subgroups, but only J serves as a normal complement for G′, as J′ ∼= C2 × C2.

Note that an almost classically Galois structure need not be unique, just because
a normal complement for a subgroup G′ of a group G is not unique in general.

The underlying Hopf algebra of an almost classically Galois structure admits a
simpler expression than the one given at Proposition 2.4.16 1.

Proposition 2.5.8. Let L/K be a (G, G′)-almost classically Galois extension with comple-
ment M. Let N be a regular and G-stable subgroup of Perm(G/G′) with N ⊂ λ(G). Then
L̃[N]G = M[N]G

′
.

Proof. Recall that the action of G on L̃[N] is the one given at (2.1). Let J = Gal(L̃/M).
Since G = J ⋊ G, we have L̃[N]G = (L̃[N]J)G′ . Since N ⊂ λ(G), N = λ(J′) for
some normal subgroup J′ of G. Since the conjugation by J leaves J′ invariant, the
conjugation by λ(J) leaves λ(J′) = N invariant. Therefore, L̃[N]J = L̃J [N] = M[N],
and the statement follows.

Example 2.5.9. Let us go back to the example from Section 4.4. We saw that J = ⟨σ⟩
is a normal complement for G′ = ⟨τ⟩, so L/K is almost classically Galois. When we
picked an element h ∈ L̃[N]G, the condition that it is fixed by the action of J lead that
it belongs to M[N]G

′
, because h is already fixed by such an action. This is because

N = λ(J), so the action of J by conjugation leaves N invariant. One can see that the
basis elements that we obtained are indeed fixed by the action of G′.

5.2 Byott’s uniqueness theorem

In this part we study a sufficient condition found by Byott in the paper [Byo96] so
as to ensure that a separable Hopf-Galois extension admits a unique Hopf-Galois
structure, which is established using the techniques from Byott’s translation that we
saw at Section 3.2. Such a condition is related with a class of integer numbers, that
are called Burnside.

Definition 2.5.10. Let n be an integer number. We say that n is Burnside if it is coprime
with its image by the Euler totient function φ, that is, gcd(n, φ(n)) = 1.

It is trivial from the definition that every prime number is Burnside. Moreover,
every Burnside number is square-free. This follows directly from the remarks that
φ(pr) = pr−1(p− 1) and φ(ab) = φ(a)φ(b) if gcd(a, b) = 1. Burnside numbers are
linked with group theory by the following result.

82



Theorem 2.5.11 (Burnside). Let n ∈ Z≥1 be a positive integer. Then every group of order
n is cyclic if and only if n is Burnside.

Byott’s uniqueness thereom provides a sufficient condition which ensures that a
separable Hopf-Galois extension admits a unique Hopf-Galois structure. Namely,
this condition is that the degree of the extension is a Burnside number. We need the
following technical lemma.

Lemma 2.5.12. Let L/K be a (G, G′)-separable degree n extension and suppose that n is
Burnside. Suppose that N is a regular and G-stable subgroup of Perm(G/G′) and let ΛN
be the set of left translations λη : N −→ N, η ∈ N. For each subgroup H of Hol(N) whose
order is divisible by n, ΛN ⊂ H.

Proof. Recall that Hol(N) = ΛN ⋊ Aut(N) by definition. Consider the projection
π2 : Hol(N) −→ Aut(N) onto the second component. Since π2 is a group epimor-
phism (because Aut(N) ∼= Hol(N)/ΛN), it maps H onto a subgroup of Aut(N),
whose order divides the order of Aut(N). Now, since n is Burnside and N has
order n, we have that N ∼= Z/nZ, and hence Aut(N) ∼= (Z/nZ)×. We deduce
that Aut(N) has order φ(n). It follows that the order of π2(H) divides φ(n). Now,
π2(H) ∼= HΛN/ΛN

∼= H/ΛN ∩ H, whence |H/ΛN ∩ H| = |H|
|ΛN∩H| divides φ(n).

Taking into account that n divides |H| and gcd(n, φ(n)) = 1, necessarily |ΛN ∩ H|
is divisible by n. By the structure of semidirect product, ΛN is the only order n
subgroup of Hol(N). Now, Cauchy theorem gives that ΛN ∩ H must have some
subgroup of order n, which is necessarily ΛN. We get ΛN ∩ H = ΛN, and hence
ΛN ⊂ H follows.

Theorem 2.5.13 ([Byo96], Theorem 2). Let L/K be a G-separable degree n extension. If
L/K is Hopf-Galois and n is Burnside, then G is solvable and L/K admits a unique Hopf-
Galois structure, which is almost classically Galois (in particular, L/K is almost classically
Galois).

Proof. Let L̃ be the normal closure of L/K, G = Gal(L̃/K) and G′ = Gal(L̃/L). The
hypothesis that L/K is Hopf-Galois ensures that it admits some Hopf-Galois struc-
ture H; let N be its corresponding regular and G-stable subgroup of Perm(G/G′).
Let α : N −→ Perm(G/G′) be the canonical inclusion. By Theorem 2.3.7, α corre-
sponds to a group embedding β : G −→ Perm(N) such that β(G) ⊂ Hol(N). Now,
note that ΛN = λN(N), where λN : N −→ Aut(N) is the left regular representation
of N. Since λN is injective, ΛN has order n. By Theorem 2.5.11, both ΛN and N are
cyclic. In addition, Aut(N) ∼= (Z/nZ)×, which is abelian. Therefore, Hol(N) is
solvable. Since β(G) ⊂ Hol(N) with β injective, we conclude that G is solvable.

Let us prove that H is an almost classically Galois structure on L/K. We have
that β(G) is a subgroup of Hol(N) and its order is that of G, which is a multiple of
n. Applying Lemma 2.5.12 with H = β(G), we get ΛN ⊂ β(G). Going over the
proof of Theorem 2.3.7, we see by (a) that β = Ca−1 ◦ λ, where Ca : Perm(N) −→
Perm(G/G′) is the group isomorphism induced by the bijection a : N −→ G/G′,
a(η) = η(1G). On the other hand, in (b) it is shown that λN = Ca−1 ◦ α. Applying
Ca on the previous inclusion, we obtain that N = α(N) ⊂ λ(G), so the Hopf-Galois
structure corresponding to N is almost classically Galois.

Finally, we shall prove that L/K does not admit other Hopf-Galois structures.
Suppose that N′ is a regular and G-stable subgroup of Perm(G/G′). If we consider
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the canonical inclusion α′ : N′ −→ Perm(G/G′), the definition of α and α′ are the
same. Thus, if β′ : G ↪→ Hol(N′) is the group embedding corresponding to α′ by By-
ott’s theorem, we have that β′ = Ca′−1 ◦ α′, where Ca′ : Perm(N′) −→ Perm(G/G′)
is the group isomorphism induced by the bijection a : N′ −→ G/G′, and then the
definitions of β and β′ are the same. Then we can regard β(G) as a subgroup of
Hol(N′). We then apply Lemma 2.5.12 with N′ as regular and G-stable subgroup
and H = β(G), obtaining that ΛN′ ⊂ β(G) ⊂ Hol(N). Hence ΛN′ is an order n sub-
group of Hol(N), so once again by Lemma 2.5.12 (with N as regular and G-stable
subgroup and H = ΛN′), we obtain ΛN ⊂ ΛN′ , both of which have order n. Nec-
essarily ΛN = ΛN′ , that is, λN(N) = λN′(N′). We use again that α and α′ have
the same definition to obtain that λN = Ca−1 ◦ α and λN′ = Ca′−1 ◦ α′ also do, to
conclude that N = N′.

A G-separable degree n extension with n Burnside and G solvable is not nec-
essarily Hopf-Galois (see [Byo96, Example after Theorem 2] for a counterexample).
Then, Theorem 2.5.13 can be restated by saying that a separable degree n extension
with n Burnside admits at most one Hopf-Galois structure.

We shall show that the converse of Theorem 2.5.13 does not hold: a G-separable
extension with G solvable and admitting a unique Hopf-Galois structure has not
necessarily Burnside degree. Indeed, it can be checked that a G-separable quartic
extension with G ∼= A4 or G ∼= S4 (thus, G solvable) admits a unique Hopf-Galois
structure, and 4 is not a Burnside number because φ(4) = 2.

Let us specify Theorem 2.5.13 to the Galois case. If L/K is a Galois extension with
group G with Burnside degree, then G is solvable and the classical Galois structure
on L/K is the unique Hopf-Galois structure on L/K. In this case, having Burnside
degree becomes a characterization for the uniqueness of Hopf-Galois structure.

Theorem 2.5.14 ([Byo96], Theorem 1). A degree n Galois extension L/K admits a unique
Hopf-Galois structure if and only if n is Burnside.

The right-to-left implication is just a particular case of Theorem 2.5.13. A proof
for the converse can be found in [Chi00, §8].

Since prime numbers are Burnside, Theorem 2.5.13 yields the following.

Corollary 2.5.15. Let p be a prime number and let L/K be a Hopf-Galois extension with
degree p. Then L/K admits a unique Hopf-Galois structure.

5.3 Opposite Hopf-Galois structures

The Greither-Pareigis theorem establishes a connection between the Hopf-Galois
structures on a separable extension and group theory. Thus, one can wonder if no-
tions or results on the latter can be translated to the former. One of these is the notion
of opposite group, of which we shall study its Hopf-Galois counterpart. For a group
(N, ⋆), its opposite, denoted by Nopp, is defined as the group whose underlying set
is also N and the operation is defined as

η ⋆′ µ := µ ⋆ η, µ, η ∈ N.

Let N be a permutation subgroup giving a Hopf-Galois structure on a separable
extension under the Greither-Pareigis correspondence. We shall see that Nopp also
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gives a Hopf-Galois structure on the same extension. But, in order to do so, we need
to visualize it as a subgroup of the same permutation group. We see that we can
identify it with the centralizer of N.

Proposition 2.5.16. Let X be a finite set and let N be a regular subgroup of Perm(X).
Fix x0 ∈ X and for each η ∈ N, define a map ϕη : X −→ X as follows: for x ∈ X,
ϕη(x) = µx ◦ η(x0), where µx ∈ N is such that µx(x0) = x. The following statements
hold:

1. For every η ∈ N, ϕη is well defined and bijective.

2. CentPerm(X)(N) = {ϕη | η ∈ N}.

3. The map Φ : Nopp −→ CentPerm(X)(N) defined by Φ(η) = ϕη is a group isomor-
phism.

Proof. 1. Let η ∈ N. Since N is regular, for each x ∈ X there is a unique µx ∈ N
such that µx(x0) = x. This ensures that ϕη is well defined. Let us see that it is
bijective. Let x, y ∈ X such that ϕη(x) = ϕη(y), that is, µx ◦ η(x0) = µy ◦ η(x0).
Since µx, µy, η ∈ N, we have that both µx ◦ η and µy ◦ η belong to N, and
by the regularity of N, they are completely determined by their definition at
x0. Hence, µx ◦ η = µy ◦ η, and composing on the right side by η−1, we get
µx = µy. Evaluating at x0, we obtain that x = y, so ϕη is injective. Since it is
defined from X to itself and X is finite, ϕη is bijective.

2. Let ϕ ∈ CentPerm(X)(N). By regularity, there is a unique η ∈ N such that
η(x0) = ϕ(x0). We claim that ϕ = ϕη. Take x ∈ X. By the definition of
centralizer, µx ◦ ϕ = ϕ ◦ µx. Now,

ϕ(x) = ϕ ◦ µx(x0) = µx ◦ ϕ(x0) = µx ◦ η(x0) = ϕη(x).

Hence ϕ = ϕη as claimed. Conversely, take η ∈ N and let us prove that ϕη

centralizes N. We need to prove that, for each µ ∈ N, ϕη ◦ µ = µ ◦ ϕη. Given
x ∈ X, µ ◦ ϕη(x) = µ ◦ µx ◦ η(x0). Now, note that

µ ◦ µx(x0) = µ(x) = µµ(x)(x0).

By regularity, µ ◦ µx = µµ(x). Then,

µ ◦ ϕη(x) = µµ(x) ◦ η(x0) = ϕη(µ(x)) = ϕη ◦ µ(x).

This proves that ϕη ◦ µ = µ ◦ ϕη, as we wanted.

3. We already know that for each ϕ ∈ CentPerm(X)(N) there is some η in the
underlying set of N such that ϕ = ϕη. This is the same as the underlying
set of Nopp, so Φ is surjective. On the other hand, if η, µ ∈ N are such that
ϕη = ϕµ, evaluating at any element x ∈ X gives µx ◦ η(x0) = µx ◦ µ(x0),
and composing by µ−1

x on the left side gives η(x0) = µ(x0). Once again, the
regularity of N gives that η = µ. This proves that Φ is bijective. Let us check
that it preserves the group structure. Given η, µ ∈ N, we must check that
Φ(η ◦′ µ) = Φ(η) ◦Φ(µ), that is, ϕµ◦η = ϕη ◦ ϕµ. Given x ∈ X, we have

ϕη ◦ ϕµ(x) = µϕµ(x) ◦ η(x0) = µµx◦µ(x0) ◦ η(x0).

85



Now, µµx◦µ(x0)(x0) = µx ◦ µ(x0), so µµx◦µ(x0) = µx ◦ µ by regularity. Then,

ϕη ◦ ϕµ(x) = µx ◦ µ ◦ η(x0) = ϕµ◦η(x),

finishing the proof.

From now on, for each regular subgroup N of a permutation group Perm(X), we
regard Nopp as a subgroup of Perm(X) by means of identifying Nopp = CentPerm(X)(N).

Proposition 2.5.17. Let X be a finite set and let N be a regular subgroup of Perm(X).
Then Nopp is regular.

Proof. Since the underlying set of Nopp is the same as the underlying set of N,
|Nopp| = |N|. Let x ∈ X and take ϕ ∈ StabNopp(x). Let η ∈ N be such that ϕ = ϕη.
Then,

µx ◦ η(x0) = ϕ(x) = x = µx(x0).

The regularity of N yields that µx ◦ η = µx, so η = 1N. Then StabNopp(x) = {Id}.

Now, we turn to the scenario of field extensions.

Proposition 2.5.18. Let L/K be a (G, G′)-separable extension and let N be a regular sub-
group of Perm(X). If N is G-stable, then so is Nopp.

Proof. Suppose that N is G-stable. Given η ∈ N and g ∈ G, we shall prove that
λ(g) ◦ ϕη ◦ λ(g−1) ∈ N, that is, λ(g) ◦ ϕη ◦ λ(g−1) = ϕη′ for some η′ ∈ N. Equiva-
lently, λ(g) ◦ ϕη ◦ λ(g−1)(x) = µx ◦ η′(x0) for some η′ ∈ N. We have that

λ(g) ◦ ϕη ◦ λ(g−1)(x) = λ(g) ◦ µλ(g−1)(x) ◦ η(x0)

= λ(g) ◦ µλ(g−1)(x) ◦ η ◦ λ(g−1) ◦ λ(g)(x0)

= λ(g) ◦ µλ(g−1)(x) ◦ η ◦ λ(g−1) ◦ µλ(g)(x0)(x0)

= µx ◦ µ−1
x ◦ λ(g) ◦ µλ(g−1)(x) ◦ η ◦ λ(g−1) ◦ µλ(g)(x0)(x0).

Thus, it is enough to show that the element

η′x := µ−1
x ◦ λ(g) ◦ µλ(g−1)(x) ◦ η ◦ λ(g−1) ◦ µλ(g)(x0) ∈ N

does not depend on x. Note that

λ(g) ◦ µλ(g−1)(x) ◦ λ(g−1) ◦ µλ(g)(x0)(x0) = x

with λ(g) ◦ µλ(g−1)(x) ◦ λ(g−1) ◦ µλ(g)(x0) ∈ N, so

µx = λ(g) ◦ µλ(g−1)(x) ◦ λ(g−1) ◦ µλ(g)(x0).

Equivalently,
λ(g) ◦ µλ(g−1)(x) ◦ λ(g−1) = µx ◦ µ−1

λ(g)(x0)
.
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Then,

η′x = µ−1
x ◦ λ(g) ◦ µλ(g−1)(x) ◦ η ◦ λ(g−1) ◦ µλ(g)(x0)

= µ−1
x ◦ λ(g) ◦ µλ(g−1)(x) ◦ λ(g−1) ◦ λ(g) ◦ η ◦ λ(g−1) ◦ µλ(g)(x0)

= µ−1
x ◦ µx ◦ µ−1

λ(g)(x0)
◦ λ(g) ◦ η ◦ λ(g−1) ◦ µλ(g)(x0)

= µ−1
λ(g)(x0)

◦ λ(g) ◦ η ◦ λ(g−1) ◦ µλ(g)(x0),

which does not depend on x0. Let us relabel

η′ := µ−1
λ(g)(x0)

◦ λ(g) ◦ η ◦ λ(g−1) ◦ µλ(g)(x0).

We obtain that
λ(g) ◦ ϕη ◦ λ(g−1)(x) = µx ◦ η′(x) = ϕη′(x)

for every x ∈ X, whence λ(g) ◦ ϕη ◦ λ(g−1) = ϕη′ ∈ N.

We conclude that, for a (G, G′)-separable extension, the opposite of a regular and
G-stable subgroup of Perm(G/G′) also is. The Greither-Pareigis correspondence
yields the following notion.

Definition 2.5.19. Let L/K be a (G, G′)-separable Hopf-Galois extension. Let H be a Hopf-
Galois structure on L/K and let N be a regular and G-stable subgroup of Perm(G/G′). The
opposite Hopf-Galois structure of H, denoted as Hopp, is the one whose corresponding
permutation subgroup is Nopp.

If N is abelian, the opposite Hopf-Galois structure of H is itself.
Let L/K be a Galois extension with group G and let λ (resp. ρ) be the left (resp.

right) regular representation of G. Recall by Proposition 2.4.19 2 that ρ(G) is central-
ized by λ(G), whence CentPerm(G)(ρ(G)) = λ(G). We obtain:

Corollary 2.5.20. Let L/K be a Galois non-abelian extension. The opposite Hopf-Galois
structure of the classical Galois structure is the canonical non-classical structure.

Remark 2.5.21. The opposite of an almost classically Galois structure need not be
almost classically Galois. As a counterexample, consider the situation at Corollary
2.5.20. The classical Galois structure on L/K corresponds to the subgroup λ(G),
while its opposite, the canonical non-classical structure, corresponds to ρ(G). The
classical Galois structure is trivially almost classically Galois, while the canonical
non-classical structure is not because ρ(G) ̸⊂ λ(G), which follows from Proposition
2.4.19 3.

Recall from Proposition 2.4.11 that if a Hopf-Galois structure H corresponds to
a subgroup N, L̃ ⊗K H ∼= L̃[N] as L̃-Hopf algebras. Using the notion of opposite
group we can find the smallest field base field with that property.

Proposition 2.5.22. Let L/K be a separable extension with normal closure L̃. Let H be a
Hopf-Galois structure on L/K and let N be its corresponding permutation subgroup. Let
G0 = λ−1(Nopp) and let L0 = L̃G0 . Then L0 is the smallest extension of K such that

L0 ⊗K H ∼= L0[N]

as L0-algebras.
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The proof of Proposition 2.5.22 makes use of descent theory and cohomology,
and it is beyond the scope of these notes. It can be consulted at [GP87, Corollary
3.2].

Note that G0 is the subgroup of elements of G that fix all the elements of N by
the action ∗ defined at (2.1). Assume that L/K is almost classically Galois with J
a normal complement of G′ and choose N = λ(J)opp. Then Nopp = λ(J) and,
consequently, J = G0. Thus, the field L0 is the complement of L/K as an almost
classically Galois extension.

Corollary 2.5.23. Let L/K be a (G, G′)-separable almost classically Galois extension with
complement M, and let J = Gal(L̃/M). Let N = λ(J)opp and let H be its corresponding
Hopf-Galois structure on L/K. Then M is the smallest extension of K such that

M⊗K H ∼= M[N].

It is remarkable that Corollary 2.5.23 states a property for the opposite of an
almost classically Galois structure. For this reason, some authors call these almost
classically Galois structures; namely, the ones given by a permutation subgroup N
such that Nopp ⊂ λ(G).

5.4 Induced Hopf-Galois structures

Let E/K be a finite and Galois extension with Galois group of the form G = J ⋊ G′,
where J is a normal subgroup of G and G′ is any subgroup of G. Call L = EG′ .
It is possible to build a Hopf-Galois structure on E/K from a pair of Hopf-Galois
structures from E/L and L/K. Such Hopf-Galois structures are called induced, and
were introduced by Crespo, Rio and Vela in the paper [CRV16].

In order to introduce the notion of induced Hopf-Galois structure, we make use
of the Greither-Pareigis correspondence. Namely, we will see that the direct product
of the permutation subgroups corresponding to Hopf-Galois structures on E/L and
L/K is isomorphic to a subgroup giving a Hopf-Galois structure on L/K.

Both of the extensions E/K and E/L are Galois with groups G and G′ respec-
tively. By Greither-Pareigis theorem:

1. The Hopf-Galois structures on E/L are in bijective correspondence with the
regular subgroups of Perm(G′) normalized by the image of the left translation
map λG′ : G′ −→ Perm(G′).

2. The Hopf-Galois structures on E/K are in bijective correspondence with the
regular subgroups of Perm(G) normalized by the image of the left translation
map λ : G −→ Perm(G) of L/K.

The situation is a bit trickier for the extension L/K, which is typically non-Galois.
Note that E is a Galois field extension of K containing L, so E contains the nor-
mal closure L̃ of L. However, in general it does not hold that E = L̃ (for instance,
when the semidirect product is direct). By Proposition 2.4.3, we can apply Greither-
Pareigis theorem to characterize the Hopf-Galois structures on L/K choosing any
Galois extension of K containing L, not just its normal closure. In particular, we
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can choose E/K. Thus, the Hopf-Galois structures on L/K are in bijective corre-
spondence with the regular subgroups of Perm(G/G′) normalized by λE(G), where
λE : G −→ Perm(G/G′) is the left translation map of L/K associated to E.

Another of the key ingredients for the existence of induced Hopf-Galois struc-
tures is that J is a transversal of G′ in G, which is a consequence of J being a normal
complement for G′ in G. This means that each left coset of G/G′ intersects with J in
exactly one element. Let us write J = {σ1, . . . , σn}, where n = [L : K]. Then, we can
write G/G′ = {σ1G′, . . . , σnG′} and identify J with G/G′. Carrying this identifica-
tion to the map λL : G −→ Perm(G/G′), we get a map λc : G −→ Perm(J) whose
definition corresponds to the action of G on the left cosets of G/G′ by means of λL.
Namely, for a given element g ∈ G, λc(g) is the permutation of J that takes an ele-
ment σi ∈ J to the representative of J in the left coset λL(g)(σiG′). Let us calculate
it. Write g = στ with σ ∈ J and τ ∈ G′. For every 1 ≤ i ≤ n,

λL(g)(σiG′) = στσiG′

= στσiτ
−1τG′

= σCτ(σi)G′

= λJ(σ) ◦ Cτ(σi)G′,

where Cτ ∈ Aut(G) is the conjugation by τ and λJ : J −→ Perm(J) is the left trans-
lation map associated to L/F. Note that Cτ(σi) ∈ J because J is a normal subgroup
of G, so λJ(σ) ◦ Cτ(σi) makes sense and belongs to J. Thus, for g = στ ∈ G,

λc(g)(σi) = λJ(σ) ◦ Cτ(σi) (2.4)

Proposition 2.5.24. Let λ : G −→ Perm(G) be the left regular representation of E/K.
Then, λ = ι ◦ χ, where

χ : G −→ Perm(J)× Perm(G′)
στ 7−→ (λc(στ), λG′(τ)),

ι : Perm(J)× Perm(G′) −→ Perm(G)
(φ, ψ) 7−→ στ 7→ φ(σ)ψ(τ).

Proof. Given g = στ ∈ G and g′ = σ′τ′ ∈ G, we have

λ(g)(g′) = gg′ = στσ′τ′ = στσ′τ−1ττ′

= σCτ(σ
′)λG′(τ)(τ′)

= λc(g)(σ′)λG′(τ)(τ′)

= ι(λc(g), λG′(τ))(g′)
= ι ◦ χ(g)(g′),

where, from the second to the third line, we have used (2.4).

We are ready to build the so-called induced Hopf-Galois structures.

Proposition 2.5.25. Let N1 be a subgroup of Perm(J) and let N2 be a subgroup of Perm(G′).
Let N = ι(N1 × N2).

1. If N1 and N2 are regular, so is N.
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2. If N1 is normalized by λL(G) and N2 is normalized by λG′(G′), then N is normalized
by λ(G).

Proof. 1. Suppose that N1 and N2 are regular. We have

|N| = |ι(N1 × N2)| = |N1 × N2| = |N1||N2| = |J||G′| = |G|,

so it is enough to check that the action of N on G is transitive. Let g = στ, g′ =
σ′τ′ ∈ G with σ, σ′ ∈ J and τ, τ′ ∈ G′. Since N1 (resp. N2) is regular, there
exists φ ∈ Perm(J) (resp. ψ ∈ Perm(G′)) such that φ(σ) = σ′ (resp. ψ(τ) =
τ′). Then,

ι(φ, ψ)(g) = ι(φ, ψ)(στ) = φ(σ)ψ(τ) = σ′τ′ = g′.

2. Let g = στ ∈ G with σ ∈ J and τ ∈ G′. Given (η, µ) ∈ N1 × N2,

χ(g)(η, µ)χ(g−1) = (λc(g)ηλc(g)−1, λG′(τ)µλG′(τ−1)) ∈ N1 × N2.

Applying ι, since it is a group homomorphism, we obtain

λ(g)ι(η, µ)λ(g−1) = ι(χ(g)(η, µ)χ(g−1)) ∈ ι(N1 × N2) = N.

Applying Greither-Pareigis theorem, we get the following.

Corollary 2.5.26. Let E/K be a Galois extension with Galois group G = J ⋊ G′ and let
L = EG′ . If N1 is a subgroup of Perm(J) giving L/K a Hopf-Galois structure and N2 is
a subgroup of Perm(G′) giving E/L a Hopf-Galois structure, then N = ι(N1 × N2) is a
subgroup giving E/K a Hopf-Galois structure.

Definition 2.5.27. A Hopf-Galois structure on E/K as in Corollary 2.5.26 is called an
induced Hopf-Galois structure on E/K.

If an induced Hopf-Galois structure H on E/K is built from Hopf-Galois struc-
tures H1 on L/K and H2 on E/L, we will also say that H is induced from H1 and
H2, or that H1 and H2 induce H. The Hopf-Galois structures H1 and H2 receive the
name of inducing Hopf-Galois structures.

Induced Hopf-Galois structures only make sense for Galois extensions whose
Galois group is a semidirect product. In particular, if the Galois group of a Galois
extension E/K is a direct product, then there are induced Hopf-Galois structures on
E/K as well. In that case, both of the extensions E/L and L/K are Galois, and one
can prove that the classical Galois structures on L/E and E/K induce the classical
Galois structure on L/K.

We see an equivalent approach to think of induced Hopf-Galois structures.

Proposition 2.5.28. Let E/K be a Galois extension with group G = J ⋊ G′ and call
L = EG′ , M = LJ . Then, the Hopf Galois structures of E/L and M/K are in one-to-
one correspondence.
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Proof. Let G := Gal(M/K). Applying the Galois correspondence to G = J ⋊ G′,
we get L ∩ M = K, so the map · |M : G′ −→ G defined by τ 7→ τ |M is a group
isomorphism. Moreover, E/L is Galois with group G′, and since J is normal in
G, M/K is Galois with group G. By Greither-Pareigis theorem, the Hopf Galois
structures of E/L (resp. M/K) are in one-to-one correspondence with the regu-
lar subgroups of Perm(G′) (resp. Perm(G)) normalized by λG′(G′) (resp. λG(G)).
The map · |F induces a group isomorphism φ : Perm(G′) −→ Perm(G) defined as
φ(η) = · |F ◦η ◦ (· |F)−1.

Let N be a subgroup of Perm(G′). Let us check that N is regular if and only if
so is φ(N). Since they have the same order as G, it is enough to check that if N is
transitive, so is φ(N). Let τ |F, τ′ |F∈ G. Since N is transitive, there is η ∈ N such
that η(τ) = τ′. Then, φ(η)(τ |F) = η(τ) |F= τ′ |F.

We claim that the following diagram is commutative:

G′
·|M //

λG′

��

G

λG

��

Perm(G′)
φ

// Perm(G)

(2.5)

Indeed, if τ, τ′ ∈ G′,

λG(τ |M)(τ′ |M) = ττ′ |M= · |M ◦λG′(τ)(τ′) = φ(λG′(τ))(τ′ |M).

Then λG(τ |M) = φ(λG′(τ)), whence λG◦ |M= φ ◦ λG, as we wanted. It follows that
N is normalized by the image of λG′ if and only if φ(N) is normalized by the image
of λG.

We have shown in the proof that there is a group isomorphism Perm(G′) ∼=
Perm(G) such that a subgroup N ≤ Perm(G′) gives E/L a Hopf-Galois structure if
and only if its image in Perm(G) gives M/K a Hopf-Galois structure. Thus, we can
modify suitably the map ι to obtain a map Perm(J)× Perm(G) −→ Perm(G). By
abuse of notation, we also call this map ι.

Corollary 2.5.29. If N1 is a regular subgroup of Perm(J) normalized by λc(J) and N2 is a
regular subgroup of Perm(G) normalized by λG(G), then ι(N1×N2) is a regular subgroup
of Perm(G) normalized by λ(G). Accordingly, from a Hopf-Galois structure on L/K and
a Hopf-Galois structure on M/K, we obtain an induced Hopf-Galois structure on E/K.

The advantage of this approach is that the description of the underlying Hopf al-
gebra and the action of an induced Hopf-Galois structure arise naturally from those
of the inducing Hopf-Galois structures.

Proposition 2.5.30. Let E/K be a Galois extension with group G = J ⋊ G′, and call
L = EG′ , M = LJ . Let H be an induced Hopf-Galois structure on L/K from inducing
Hopf-Galois structures H1 on L/K and H2 on M/K.

1. There is an isomorphism of K-Hopf algebras H −→ H1 ⊗K H2 between the underly-
ing Hopf algebras of H and H1 ⊗K H2.

91



2. Given w ∈ H1, η ∈ H2, x ∈ L and y ∈ M,

(wη) · (xy) = (w · x)(η · y).

Proof. 1. Recall from Example 2.2.6 that the functor Φ transforms tensor products
of K-algebras into cartesian products of sets, so Ψ does the other way around.
Let Ni = Φ(Hi), i ∈ {1, 2}. By definition of induced Hopf-Galois structure
Φ(H) = N1 × N2 = Φ(H1)×Φ(H2). Applying Ψ, we get an isomorphism of
K-Hopf algebras H ∼= H1 ⊗K H2.

2. Let us write N1 = {ηi}n
i=1 and N2 = {µj}m

j=1. Then,

w ∈ H1 = E[N1]
G =⇒ w =

r

∑
i=1

ciηi, ci ∈ E,

η ∈ H2 = E[N2]
G =⇒ η =

u

∑
j=1

djµj, dj ∈ E.

Hence,

(wη) · (xy) =

(
n

∑
i=1

m

∑
j=1

cidjι(ηi, µj)

)
· (xy)

=
n

∑
i=1

m

∑
j=1

cidjι(ηi, µj)
−1(IdG)(xy) =

n

∑
i=1

m

∑
j=1

cidjι(η
−1
i , µ−1

j )(IdG)(xy)

=
n

∑
i=1

m

∑
j=1

cidjη
−1
i (IdJ)(x)µ−1

j (IdG′)(y)

=

(
n

∑
i=1

ciη
−1
i (IdJ)(x)

)(
m

∑
j=1

djµ
−1
j (IdG′)(y)

)
= (w · x)(η · y)

Remark 2.5.31. If L/K is any H-Galois extension, then we can define a K-linear map
ρH : H −→ EndK(L) by ρH(h)(x) = h · x. In the case that E/K is a Galois extension
with group G = J ⋊ G′ and H = H1 ⊗K H2 is an induced Hopf-Galois structure on
E/K, Proposition 2.5.30 2 means that ρH = ρH1 ⊗K ρH2 .

6 Exercises

6.1 Exercises on Sections 1-3

1. Give a direct proof that the fixed “set” Fix(A, H′) under a sub-Hopf algebra
H′ ⊂ H defined in Section 1 is a subalgebra of the H-Galois extension A.

2. (a) The symmetric group Sn of order n! acts naturally on the set {1, . . . , n}.
What is the stabilizer of an element in that set? (You may take the element
n, for example.)
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(b) The linear group GL(n, K) acts naturally on the n-dimensional column
space Kn. Describe the stabilizer of a non-zero column vector. (You may
take for instance the first standard basis vector.)

(c) The special orthogonal group SO(3, R) acts on R3. Can you describe the
stabilizer of e1 = (1, 0, 0)T?

3. Assume that the group Γ acts on a set S, and that s, t ∈ S are in the same orbit.
Describe the relation between the stabilizer Γs of s and the stabilizer Γt of t. Is
there any relation in general if s and t are in different orbits?

4. Suppose that Γ = ΓK acts on a finite set S such that the open subgroup U of
finite index acts trivially. Show there is a normal subgroup U′ < U which is
still open of finite index in Γ. (Hint: consider conjugates of U.)

5. In Section 2.5 we defined a certain Hopf algebra H∗ and specific elements c, s ∈
H∗. Show that the two elements 1 and h := (1,−1, 1,−1) = c2− s2 are the only
group-like elements in H∗. What is the automorphism of L induced by h?

6. Find a base field K and a degree five polynomial f over it, such that the Galois
group of f (i.e. of the splitting field of f ) is A5. Note that this splitting field
is the normal closure of the extension L/K obtained by adjoining a root of f .
(Any means are allowed: the literature, the Internet, your own ideas.)

7. In th context of Lemma 2.3.4, find two more equivalent conditions, now in-
volving right translations ρw, with w in the group X.

8. Let C be a cyclic group of order p. Show that every group between C = C ⋊ 1
and Hol(C) = C ⋊ Aut(C) has the form C ⋊ ∆, where ∆ is cyclic and r = |∆|
divides p− 1. Do all these r actually occur?

6.2 Exercises on Sections 4-5

1. Let L/K be a (G, G′)-separable Hopf-Galois extension and let N1, N2 be regular
and G-stable subgroups of Perm(G/G′). Consider the action ∗ of G on N1 and
N2 defined as conjugation by λ(G). Show that N1

∼= N2 as G-groups (that
is, there is a G-equivariant group isomorphism between them) if and only if
L̃[N1]

G ∼= L̃[N2]
G as K-Hopf algebras.

2. Two Hopf-Galois structures (H, ·), (H′, ·′) on the same field extension L/K are
said to be isomorphic if there is an isomorphism of K-Hopf algebras f : H −→
H′ such that h · α = f (h) ·′ α. In practice, isomorphic Hopf-Galois structures
on L/K are considered as the same Hopf-Galois structure (for instance, in the
Greither-Pareigis theorem).

(a) Let L/K be a Galois extension with group G. Prove that the classical
Galois structure on L/K and the Hopf-Galois structure corresponding to
ρ(G) under the Greither-Pareigis correspondence are isomorphic.

(b) Give an example of separable Hopf-Galois extension L/K and different
(non-isomorphic) Hopf-Galois structures H and H′ on L/K such that N ∼=
N′, where N (resp. N′) is the permutation subgroup corresponding to H
(resp. H′).
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3. Let L/K be a Galois extension with group G and let N be a regular and G-stable
subgroup of Perm(G). Show that for each φ ∈ Aut(G), (φ ◦ N ◦ φ−1)opp =
φ ◦ Nopp ◦ φ−1.

4. Let L/K be a Galois extension with group G. For each regular and G-stable
subgroup N of Perm(G) and each g ∈ G, call Ng := ρ(g)Nρ(g−1). Two Hopf-
Galois structures on L/K corresponding to permutation subgroups N, N′ are
said to be ρ-conjugate if N′ = Ng for some g ∈ G. Fix such a subgroup N of
Perm(G) and g ∈ G.

(a) Prove that Ng is indeed a regular and G-stable subgroup of Perm(G).

(b) Show that the map ϕ : L[N]G −→ L[Ng]G defined by ϕ(∑η∈N cηη) =

∑η∈N cηρ(g)ηρ(g−1) is an isomorphism of K-Hopf algebras.

(c) Prove that Nopp
g = (Nopp)g.

5. Prove that every separable field extension of degree at most 4 is almost classi-
cally Galois.

6. Let L/K be a (G, G′)-separable almost classically Galois extension and let J be
a normal complement for G′ in G. Write ∗ for the action of G on M[J] defined
as the Galois action on M and the conjugation by G on J. Show that if J is
abelian, then there is an isomorphism of Hopf-Galois structures between

M[J]G
′
= {h ∈ M[J] | τ ∗ h = h for all τ ∈ G′}

together with its classical action on L and the Hopf-Galois structure on L/K
corresponding to λ(J).

7. Consider the extension L/K at Example 2.5.7. Determine explicitly the Hopf-
Galois structure associated to the permutation subgroup N = ⟨(1G, σ, σ2, σ3)⟩.

8. Let E/K be a Galois extension with group of the form J × G′ and call L = EG′ .
Prove that the classical Galois structure on E/K is the induced Hopf-Galois
structure from the classical Galois structures on E/L and L/K.
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Chapter 3

Hopf-Galois extensions in number
theory

We have seen that a finite field extension L/K is Galois if and only if the canonical
map j : L⊗K K[G] −→ EndK(L) is bijective, where G = AutK(L). This is a charac-
terization of the Galois condition in terms of the action of G on L. Thus, we may
wonder if any notion on Galois theory depending on the Galois action can be gen-
eralized or translated to Hopf-Galois theory. An example, already studied, is the
Galois correspondence: the notion of fixed field by a subgroup is generalized to the
one of fixed field by a sub-Hopf algebra, and there is a (weaker) Hopf-Galois version
of the fundamental theorem of Galois theory.

In this chapter, we will use this idea to study a generalization of Galois module
theory to the Hopf-Galois context. Galois module theory consists in the study of the
ring of integers in a Galois extension L/K of number or p-adic fields as a module
over an object depending on the Galois group of the extension. The behavior of such
a module is closely linked with the ramification of the prime ideals in the extension,
and hence falls directly into the domain of number theory. Moreover, such an object
that will be the ground ring of the module is characterized in terms of the Galois
action. Replacing it by the action of a Hopf-Galois structure is how the so called
Hopf-Galois module theory arises.

1 Normal bases and normal basis generators

1.1 The normal basis theorem

A Galois module is an abelian group M receiving a group action from a Galois group
in such a way that the operation of M is preserved by the action. For instance,
a Galois field extension is a Galois module. The starting point of Galois module
theory is the normal basis theorem, which makes use of this action so as to find a
basis of the field.

Theorem 3.1.1 (Normal basis theorem). Let L/K be a finite and Galois extension with
Galois group G. Then, there is some element α ∈ L such that

{g(α) | g ∈ G}

is a K-basis of L.

95



In other words, the normal basis theorem asserts that a finite and Galois exten-
sion possesses a basis formed by the Galois conjugates of a single element α. Such a
basis is called a normal basis, and consequently, α is called a normal basis generator.
Of course, a normal basis generator is not necessarily unique: if α is a normal basis
generator and u ∈ K×, then αu is also a normal basis generator. In fact, all normal
basis generators of a Galois extension are of this form.

The normal basis theorem was first conjecture in the 19th century, and was proved
in the first half of the 20th century. Even though it is not entirely clear who discov-
ered the theorem, there is some consensus that the first uniform proof was given by
Deuring in 1932. A complete proof can be found in [Coh93, Theorem 3.2.12].

We reformulate the normal basis theorem in a more convenient way for our pur-
poses. Let L/K be a finite and Galois extension and suppose that α is a normal basis
generator. Then, every x ∈ L can be written uniquely as

x = ∑
g∈G

xgg(α), xg ∈ K.

That is, x is a linear combination of the elements g(α) with unique scalar multi-
ples xg ∈ K. Now, let us change the perspective: we regard x as the result of let
the element h = ∑g∈G xgg ∈ K[G] act on α. The uniqueness of the xg gives also
the uniqueness of h in K[G]. This approach gives rise to the following equivalent
statement.

Theorem 3.1.2 (Reformulation of the NBT). Let L/K be a finite and Galois extension
with Galois group G. Then, L is a free K[G]-module.

Note that since both L and K[G] are K-vector spaces of dimension [L : K], L is of
rank one as a free K[G]-module. It is through this reformulation how we generalize
normal basis theorem.

1.2 A Hopf-Galois version of the normal basis theorem

Let L/K be a Hopf-Galois extension and let H be a Hopf-Galois structure on L/K.
We know by definition that L is a left H-module algebra with respect to the action ·
of H on L; in particular it is an H-module.

Theorem 3.1.3. Let L/K be an H-Galois extension. Then L is H-free of rank one.

Proof. Since L/K is H-Galois, it is also an H∗-Galois object via the map β : L −→
L ⊗K H∗ obtained from the action of H as in Proposition 1.2.46. Let us write the
Sweedler-like notation for β as a coaction. On the other hand, we have an action of
H on H∗ defined by

h ∗ f := ∑
( f )

f(1)⟨ f(2), h⟩, h ∈ H, f ∈ H∗.

The map
γ : L⊗K L −→ L⊗K H∗

x⊗ y 7−→ ∑(y) xy(0) ⊗ y(1)
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is bijective. Now, consider the action of H on L⊗K L via the second factor and the
action of H on L⊗K H∗ defined by

h · (x⊗ f ) = (h · x)⊗ (h ∗ f ).

Then, both L⊗K L and L⊗K H∗ are H-modules. Now, given x, y ∈ L and h ∈ H, we
have

γ(x⊗ (h · y)) = γ
(

x⊗
(

∑
(y)

y(0)⟨y(1), h⟩
))

= ∑
(y)

xy(0) ⊗ y(1)⟨y(2), h⟩

= ∑
(y)

xy(0) ⊗ h ∗ y(1)

= h · γ(x⊗ y).

This proves that γ is a homomorphism of H-modules. Let n = [L : K]. We have that
both L and H∗ have dimension n as K-vector spaces. It follows that

L⊕ (n). . .⊕ L ∼= H∗ ⊕ (n). . .⊕ H∗

as H-modules. Now, we can use Krull-Schmidt-Azumaya theorem, which ensures
that both isomorphic H-modules decompose uniquely as H-modules. Necessarily
L ∼= H∗ as H-modules, and since H∗ ∼= H as H-modules, we conclude that L ∼= H
as H-modules, that is, L is free of rank one as an H-module.

This proof of Theorem 3.1.3 comes from [Chi00, (2.16)]. In fact, it is possible to
define the H-Galois condition for extensions of commutative rings, and the result as
stated therein holds for such extensions.

If L/K is Galois and we choose H to be the classical Galois structure on L/K,
then we recover the usual normal basis theorem. Following this analogy, we will
say that any generator θ of L as an H-module generates an H-normal basis or that it
is an H-normal basis generator.

1.3 Normal basis generators for Hopf-Galois extensions

Let L/K be a (G, G′)-separable H-Galois extension with normal closure L̃. Then we
know that H = L̃[N]G for some regular and G-stable subgroup N of Perm(G/G′). It
is possible to give a criterion for an element β ∈ L to be an H-normal basis generator
for L in terms of the elements of N and their action on L through the action of G.
There is a first visible issue: since the elements of N are not typically elements of H.
The strategy will be to tensorize H with L̃ to obtain a space where the elements of N
form a basis and the action is easy to calculate. Actually, this is the approach for the
proof of Greither-Pareigis theorem given at [Chi00, Chapter 2], which we proceed to
sketch.

Since the space L̃⊗K L is not especially convenient to work with, we shall iden-
tify it with M := Maps(G/G′, L̃). An L̃-basis of M is formed by the elements

ug(h) = δg,h, g, h ∈ G.
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Consider the action of G on M given by

σ( f )(g) = σ ◦ f (σ−1 ◦ g), σ, g ∈ G, f ∈ M.

Then M is a G-compatible L̃-Hopf algebra.

Proposition 3.1.4 ([Chi00], (6.1)). The map γ : L̃⊗K L −→ M defined by

γ(x⊗ y)(σ) = xσ(y)

is a G-equivariant isomorphism of K-algebras.

Note that by Theorem 2.4.14, M ∼= L̃⊗K MG. But that the same time, the proposi-
tion gives a G-equivariant isomorphism M ∼= L̃⊗K L as L̃-algebras. We obtain then
a G-equivariant isomorphism L̃⊗K L ∼= L̃⊗K MG of L̃-algebras. By descent, we get
an isomorphism of K-algebras

L −→ MG,
x 7−→ fx := ∑g∈G/G′ g(x)ug. (3.1)

Let H be a Hopf-Galois structure on L/K. By [Chi00, (6.3)], there is a regular
subgroup N of Perm(G/G′) such that L̃⊗K H = L̃[N]. In addition, M is an L̃[N]-
Galois extension of L̃ (of rings). Thus, we have an action of L̃[N] on M, which
acquires a special form on the elements ug.

Lemma 3.1.5. Let L/K be a (G, G′)-separable H-Galois extension and let N be the corre-
sponding permutation subgroup. Then, there is a group action of N on M such that for each
η ∈ N and each g ∈ G/G′, there is a unique η(g) ∈ G/G′ with η(ug) = uη(g).

This result is inserted in the proof of [Chi00, (6.3)]. By translating this expression
of the action by descent to the action of H on L, we get the description given at
Proposition (2.3). On the other hand, the equality H = L̃[N]G is also obtained via
the equivalence of categories at 2.4.14.

In order to give a criterion for an element of L to be an H-normal basis generator,
we prove that we can raise it to M. Note that since M is an L̃[N]-Galois extension
of L̃ and the generalization of the normal basis theorem also holds for this case, it
makes sense to consider L̃[N]-normal basis generators at M.

Lemma 3.1.6. An element x ∈ L is an H-normal basis generator for L if and only if fx is
an L̃[N]-normal basis generator for M.

Proof. Fix x ∈ L. Suppose that L = H · x. Applying the isomorphism at (3.1), we
obtain MG = L̃[N]G · fx. Since L̃⊗K MG = M and L̃⊗K L̃[N]G = L̃[N], tensorizing
by L̃ yields M = L̃[N] · fx. Conversely, assume that M = L̃[N] · fx. Since the
action · is G-equivariant and fx ∈ MG, MG = (L̃[N] · fx)G = L̃[N]G · fx, whence
L = H · x.

Next, we characterize the L̃[N]-normal basis generators for M and carry them to
L.
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Proposition 3.1.7. An element x ∈ L is an H-normal basis generator for L if and only if
the matrix

TN(x) := (η(g)(x))η∈N,g∈G/G′

is non-singular.

Proof. Fix x ∈ L. By Lemma 3.1.6, L = H · x if and only if M = L̃[N] · fx. By
standard linear algebra, this happens if and only if the matrix whose columns are
the coordinates of the elements η · fx (where η runs through N) is non-sigular. Now,
given η ∈ N,

η · fx = η ·
(

∑
g∈G/G′

g(x)ug

)
= ∑

g∈G/G′
g(x)uη(g)

= ∑
g∈G/G′

η−1(g)(x)ug

We obtain that the aforemetioned matrix is TN(x) up to a permutation of the rows,
whence the statement follows.

An interesting application is that a Hopf-Galois extension have the same normal
basis generators for opposite Hopf-Galois structures.

Proposition 3.1.8. Let L/K be an H-Galois extension. Then x is an H-normal basis gen-
erator for L if and only if x is an Hopp-normal basis generator for L.

Proof. Let G and G′ be such that L/K is (G, G′)-separable. Let N be the regular and
G-stable subgroup of Perm(G/G′) corresponding to H. Recall that Nopp is identified
with the centralizer of N in Perm(G/G′). We shall show that TN(x) is non-singular
if and only if TNopp(x) is non-singular. Let n = [L : K] and write G/G′ = {gj}n

j=1.
For each 1 ≤ j ≤ n, let ηj (resp. η′j) be the element of N (resp. N′) such that ηj(1) = gj

(resp. η′j(1) = gj). Then

det(TN(x)) = det((ηi(gj))
n
i,j=1)

= det((ηi ◦ η′j(g1))
n
i,j=1)

= det((η′j ◦ ηi(g1))
n
i,j=1)

= det((η′j(gi))
n
i,j=1)

= det(TNopp(x)t)

= det(TNopp(x)).

(3.2)

Corollary 3.1.9. Let L/K be a Galois extension. An element x ∈ L is an Hc-normal basis
generator for L if and only if it is an Hλ-normal basis generator for L.
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2 Elements of algebraic number theory

Prior to the introduction of Galois module theory for rings of integers and its gen-
eralization to Hopf-Galois theory, we shall view some basic notions on algebraic
number theory that we will need. The main references for this section are [LL07,
Chapters 23-25] and [Neu99, Chapter 2].

2.1 Dedekind domains and their fraction fields

Dedekind domains are rings whose ideals have a similar arithmetic as the integer
numbers. The study of ideals historically arose from the study of Fermat’s last the-
orem. Particularly, there was an interest in studying whether rings of integers of
number fields possess the unique factorization property. In the end, it was found
that the answer is negative (for instance, 6 = 3 · 2 = (1 +

√
−5)(1 −

√
−5) in

Z[
√
−5], which is the ring of integers of Q(

√
−5) because −5 ≡ 3 (mod 4)). In

view of this behavior, Kummer introduced the so called ideal numbers, which also
capture the integer multiples, and proved that for this there is a unique factorization
property. This derived into the modern notion of ideal of a ring.

Proposition 3.2.1 ([Rib72], Chapter 7, Theorem 1). Let A be an integral domain. The
following statements are equivalent:

1. A is Noetherian, integrally closed and with Krull dimension 1 (that is, every non-zero
prime ideal of A is maximal).

2. For every ideal I of A, there are unique prime ideals p1, . . . , pr of A and unique non-
negative integers α1, . . . , αr such that I = ∏r

i=1 p
αi
i .

Definition 3.2.2. Every integral domain R satisfying the equivalent conditions at Proposi-
tion 3.2.1 is called a Dedekind domain.

Let A be a Dedekind domain. The product of ideals in A somehow imitates the
product of integer numbers. The condition 2 means that each ideal of A factorizes as
a product of prime ideals with non-negative exponents. Moreover, the trivial ideal
A is the identity for this product. Integer numbers admit multiplicative inverses as
soon as we introduce the rational numbers in the picture. Let us see that something
similar happens for Dedekind domains. Let K = Frac(A). The modules of the form

αI, α ∈ K×, I ideal of A

are called fractional ideals of A. The ideals of A are also fractional ideals, and in this
context often receive the name of integral ideals. Each fractional ideal (including the
integral ones) admits an inverse for the product, and consequently each fractional
ideal factorizes uniquely as a product of prime ideals of A with non-necessarily
non-negative exponents.

Dedekind domains are of our interest because they include the rings of integers
of number fields and p-adic fields, for any prime p. For this reason, it is useful to
work with the fields of fractions of Dedekind domains, and the extensions of such
fields. Let K be the field of fractions of a Dedekind domain OK, let L be a finite
and separable field extension of K and let OL be the integral closure of OK in L (so
that L is the fraction field of OL). In short, we will write that L/K is an extension
associated to Dedekind domains. In such a situation, OL is again a Dedekind domain
(see [Neu99, Proposition 8.1]).
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2.1.1 Trace, norm and discriminant

Definition 3.2.3. Let L/K be an extension associated to Dedekind domains. Let n = [L :
K], let σ1, . . . , σn be the K-embeddings of L and let α ∈ L.

1. The trace of α is defined as TrL/K(α) = ∑n
i=1 σi(α).

2. The norm of α is defined as NL/K(α) = ∏n
i=1 σi(α).

Note that the trace and the norm of an element α ∈ L lie in K, and they even lie
in OK if α ∈ OL. Furthermore, for any tower of fields K ≤ E ≤ L, we have

TrL/K = TrE/K ◦ TrL/E, NL/K = NE/K ◦NL/E.

Definition 3.2.4. Let L/K be a degree n extension of number fields and let σ1, . . . , σn be the
K-embeddings of L. The discriminant of an n-uple (α1, . . . , αn) ∈ Ln is defined as

discL/K(α1, . . . , αn) = det((σi(αj))
n
i,j=1)

2.

The discriminant also admits the expression

discL/K(α1, . . . , αn) = det((TrL/K(αiαj))
n
i,j=1).

If K ≤ E ≤ L is a tower of fields, then

discL/K(α1, . . . , αn) = discE/K(α1, . . . , αn)
nNE/K(discL/E(α1, . . . , αn)).

Proposition 3.2.5. Let L/K be a degree n extension of number fields. Given α1, . . . , αn ∈ L,
disc(α1, . . . , αn) ̸= 0 if and only if α1, . . . , αn are K-linearly independent.

Given α ∈ L, we denote discL/K(α) ≡ discL/K(1, α, . . . , αn−1). If f = min.poly.(α, K),
then discL/K = disc( f ), where the discriminant of f is defined as just after Proposi-
tion 1.1.49.

In all the cases where no ambiguity arise, we may omit subscripts.

2.1.2 Bases of Dedekind domains

This section is motivated by the following result:

Proposition 3.2.6 ([MR89], Corollary to Theorem 11.7). Let L/K be an extension asso-
ciated to Dedekind domains. Then, OL is finitely generated as an OK-module.

If such an extension L/K happens to be free, it admits some finite basis.

Definition 3.2.7. Let L/K be an extension associated to Dedekind domains and assume
thatOL is free as anOK-module. We shall refer to anOK-basis forOL as an integral basis
for L/K or a K-integral basis for L.

It is well known that finitely generated torsion-free modules over principal ideal
domains (PID) are free. If we assume that char(K) = 0 and that OK is a PID, then
L/K admits some integral basis.

The discriminant is an invariant of the integral bases: if {βi}n
i=1 and {γj}n

j=1 are
integral bases for L/K, then disc(β1, . . . , βn) = disc(γ1, . . . , γn) (see [Chi00, (22.3)];
there it is proved for a more general notion of discriminant for algebras over com-
mutative rings). Thus, the following concept makes sense.

Definition 3.2.8. Let L/K be an extension associated to Dedekind domains and suppose
thatOL isOK-free. The discriminant of L/K, denoted disc(L/K), is defined as the discrim-
inant of an integral basis for L.
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2.2 Number fields and their rings of integers

Recall that number fields are defined as the finite field extensions of the field Q of
rational numbers. The ring of integers of a number field L is the set of algebraic in-
tegers (roots of monic polynomials with integer coefficients) inside L. Any number
field is the fraction field of its ring of integers. It is known that the ring of integers of
a number field is a Dedekind domain (see for example [Mar77, Theorem 14]). Then,
we can consider the notions of trace, norm and discriminant for number fields, and
ideals of rings of integers decompose uniquely as products of prime ideals.

2.2.1 Integral bases

Let L/K be an extension of number fields. Since L/K is an extension associated
to Dedekind domains, if we assume that OK is a PID, we have that OL is a free
OK-module of rank n := [L : K]. Then, we can consider K-integral bases of Q. In
particular, all of this applies when K = Q (so that we consider just a number field
L), because Z is a PID. In that case, we just talk about integral bases for L.

Example 3.2.9. Let L = Q(
√

m) be a quadratic field. Then, an integral basis for L is{
{1, 1+

√
m

2 } if m ≡ 1 (mod 4),
{1,
√

m} if m ≡ 2, 3 (mod, 4).

Example 3.2.10. Let L = Q(ζm) be the m-th cyclotomic field. Then, an integral basis
for L is

{ζk
m | 1 ≤ k ≤ m, gcd(k, m) = 1}.

Consequently, OL = Z[ζm].

Both quadratic and cyclotomic fields have the property that their rings of inte-
gers are generated as Z-algebras as a single element.

Definition 3.2.11. A number field L is said to be monogenic if there is some element α ∈
OL such that OL = Z[α].

It turns out that monogenic number fields are extremely uncommon, and the
problem of characterizing the monogenity for a family of number fields is often
extraordinarily difficult.

2.2.2 Ramification of primes of a number field

Now, suppose that we have an extension L/K of number fields and p is a prime
ideal of OK. Then

pOL =
{ s

∑
i=1

αiβi | αi ∈ p, βi ∈ OL

}
is clearly an ideal of OL. Thus, it factorizes uniquely as a product of prime ideals.
The features of the primes that appear in such a factorization is what we understand
by the ramification of a prime ideal of OK.

At this point, for any number field E, we will refer to a prime ideal of OE just as
a prime of E.
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Definition 3.2.12. Let L/K be an extension of number fields. Let p be a prime of K and let
P be a prime of L. We will say that P lies over p, or that p lies under P, if p = P∩ K.

While for a prime p of K there may be several primes of L lying over p (the ones
at the factorization of pOL), for each prime P of L, there is a unique prime of K lying
under P; namely p := P∩ K.

Definition 3.2.13. Let L/K be an extension of number fields. Let p be a prime of K and let
P be a prime of L over p.

1. The ramification index of P over p, denoted e(P/p), is defined as the exponent of P
in the factorization of pOL.

2. The inertia degree of P over p is defined as f (P/p) = [OL/P : OK/p].

The inertia degree is well defined because the inclusion OK ↪→ OL induces a
field monomorphism OK/p ↪→ OL/P.

The following states that both the ramification index and the inertia degree are
multiplicative by towers.

Proposition 3.2.14 ([Mar77], Chapter 3, Exercise 10). Let K ≤ E ≤ L be a tower of
number fields and consider a tower of primes pK ≤ pE ≤ pL inside. Then

e(pL/pK) = e(pL/pE)e(pE/pK),

f (pL/pK) = f (pL/pE) f (pE/pK).

Moreover, we have a basic relation of these objects with the degree of the exten-
sion to which they refer.

Theorem 3.2.15 ([Mar77], Chapter 3, Theorem 21). Let L/K be a degree n extension of
number fields. Let p be a prime of K and let P1, . . . ,Pr the primes of L lying over p. Then

n =
r

∑
i=1

e(Pi/p) f (Pi/p)

This gives an upper bound for the possible values of the ramification index and
the inertia degree of each prime over p, as well as for the amount of primes at the
factorization of pOL.

We establish some terminology that will be appearing repeatedly.

Definition 3.2.16. Let L/K be a degree n extension of number fields and let p be a prime of
K. We say that p is:

1. Ramified at a prime P of L over p, if e(P/p) > 1. We will also say that p is ramified
in L if it is so at some prime of L lying over p.

2. Unramified at a prime P of L, if it is not ramified at P. Likewise, we say that it is
unramified in L if it is not ramified in L.

3. Totally ramified in L, if there is some prime P of L such that e(P/p) = n.

4. Split in L, if there is more than a prime of L over p. Otherwise, we say that p is
non-split in L.
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5. Inert in L, if pOL is a prime ideal of OL.

6. Totally split in L, if in the factorization of pOL there are n distinct primes of L.

7. Tamely ramified at a prime P of L over p, if p ∤ e(P/p), where p is the rational
prime under p. If p is tamely ramified at all primes of L, we will say that p is tamely
ramified in L.

8. Wildly ramified at a prime P of L, if it is not tamely ramified at P. We will also say
that it is wildly ramified in L if it is not tamely ramified in L.

The condition that p is totally ramified in L means that there is exactly one prime
P of L over p, for which e(P/p) = n and f (P/p) = 1. The condition that p is inert
also implies that there is exactly one prime P of L over p, but in this case e(P/p) = 1
and f (P/p) = n. Both situations are particular cases of the non-split one, in which
we just know that e(P/p) f (P/p) = n. The condition that p is totally split means
that there are exactly n primes P1, . . . ,Pn of L over p and e(Pi/p) = f (Pi/p) = 1
for all 1 ≤ i ≤ n.

An important remark is that the ramified primes of a number field can be char-
acterized arithmetically and, in particular, they are a finite number.

Theorem 3.2.17. Let L be a number field and let p be a rational prime. Then p is ramified
in L if and only if p | disc(L).

We finish the section by discussing tamely ramified extensions, which are very
interesting from the point of view of number theory, as they can be connected with
other arithmetic invariants of an extension.

Proposition 3.2.18. Let L be an abelian number field. Then L/Q is tamely ramified if and
only if there exists n ∈ Z≥1 odd and square-free such that L ⊂ Q(ζn).

This result is related with the commonly known as the Kronecker-Webber the-
orem: every abelian number field is contained in some cyclotomic extension. It is
easy to check that the if n | m, the n-th cyclotomic field is contained in the m-th cyclo-
tomic field. The minimal integer n for which an abelian number field L is contained
in the n-th cyclotomic field is called the conductor of L. Thus, Proposition 3.2.18
means that tamely ramified extensions are the abelian number fields with odd and
square-free conductor.

2.3 Extensions of p-adic fields and their ramification

Let p be a prime number. The beginning of the theory of p-adic fields is the intro-
duction of the field Qp of p-adic numbers, which is obtained by adjoining to Q the
limits of the rational Cauchy sequences with respect to the p-adic absolute value
| · |p : Q −→ R≥0. We view briefly this construction.

Absolute values and valuations

Definition 3.2.19. Let L be a field. An absolute value on L is a map | · | : L −→ R≥0
with the following properties:

1. For any element a ∈ L, |a| = 0 if and only if a = 0.
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2. |ab| = |a||b| for every a, b ∈ L.

3. |a + b| ≤ |a|+ |b| for every a, b ∈ L.

If |L×| is discrete with respect to the usual topology of the real line, we say that
| · | is discrete. In that case, it can be proved that | · | is non-archimedean, that is,

|a + b| ≤ max(|a|, |b|) for every a, b ∈ L,

which is a stronger property than (3).

Definition 3.2.20. Let L be a field. A valuation on L is a map v : L −→ R ∪ {∞} such
that:

1. For any element a ∈ L, v(a) = ∞ if and only if a = 0.

2. v(ab) = v(a) + v(b) for every a, b ∈ L.

3. v(a + b) ≥ min{v(a), v(b)} for every a, b ∈ L.

Non-archimedean absolute values and valuations on a field L correspond to each
other by the equality |x| = cv(x) for every x ∈ L×, where c ∈ (0, 1). The condition
that | · | is discrete translates into v(L) ⊆ Z, in which case we also say that v is
discrete.

An absolute value on a field induces a metric, and hence a topology. If a field
equipped with an absolute value contains all the limits of Cauchy sequences, we
will say that it is complete. Any field L with an absolute value can be completed
by adjoining the limits of Cauchy sequences. The field obtained in this procedure is
what we understand by the completion of L. Formally:

Definition 3.2.21. Let L be a field and let | · | be an absolute value on L. A completion of
(L, | · |) is a pair (L̂, |̂·|) where L̂ is a field containing L and |̂ · | is an absolute value on L̂
such that:

1. The restriction of |̂ · | to L coincides with | · |.

2. L is dense in L̂ with respect to |̂ · |.

3. (L̂, |̂ · |) is a complete metric space.

Theorem 3.2.22 ([LL07], Chapter 23, Theorem 2). Let K be a field and let | · | be an
absolute value on K. Then a completion of (K, | · |) exists and is unique up to absolute-
value-preserving K-isomorphism.

The field Qp of p-adic numbers

Let p be a prime number. On Q, we can define | · |p : Q −→ R≥0 as |0|p = 0 and, for
any non-zero a ∈ Q, as

|a|p = p−vp(a),

where vp(a) is the exponent of p in the factorization of a. This is a discrete absolute
value, the so-called p-adic absolute value. Consequently, vp : Q −→ Z ∪ {∞} is a
discrete valuation. In fact, vp(Q) = Z. The field Qp is defined as the completion of
Q with the p-adic absolute value.
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2.3.1 The structure of p-adic fields

For a prime p, p-adic fields can be seen as the analogues of number fields for Qp.

Definition 3.2.23. A p-adic field is a finite field extension of Qp.

As in the case of number fields, since the field Qp has characteristic zero, it is
perfect, so every extension of p-adic fields is separable.

By [LL07, Chapter 23, Theorem 4], absolute values of a complete field can be
uniquely extended to an absolute value on a field extension. Moreover, extensions
of discrete absolute values are discrete. Consequently, any p-adic field L can be
endowed with a discrete absolute value | · |L, from which we can define a valuation
vL, which we refer to as the L-valuation.

Valuation rings

We state the following result it for p-adic fields, but it actually holds for a larger class
of fields.

Proposition 3.2.24 ([LL07], Chapter 23, F4). Let L be a p-adic field.

1. OL := {a ∈ L | vL(a) ≥ 0} is a subring of L, called the valuation ring of L.

2. pL := {a ∈ L | vL(a) = 0} is an ideal of OL, called the valuation ideal of L.

3. An element u ∈ OL is a unit if and only if vL(u) = 0, so pL is a maximal ideal ofOL.

4. κL := OL/pL is a field, called the residue field of L.

The valuation ring of Qp is denoted by Zp, commonly known as the ring of p-
adic integers. It can be obtained as the projective limit

Zp = lim
←−
n∈N

Z/pnZ.

From [LL07, Chapter 23, Theorem 4’], we have that any element α ∈ Qp is inte-
gral over Zp if and only if min.poly.(α, Qp) ∈ Zp[x]. Thus, for any p-adic field L, the
elements of the valuation ring OL of L are the elements of L that are integral over
Zp. Hence, we can regard valuation rings as a p-adic analogue of rings of integers
in number fields.

The residue field κL of a p-adic field is always finite and possesses characteristic
p. This is the reason why some authors identify the case of p-adic fields as the mixed
characteristic case.

Discrete structure

The valuation ring of a p-adic field is a discrete valuation ring (DVR), that is, a
PID that possesses a unique prime ideal. All discrete valuation rings are Dedekind
domains. In the case of a p-adic field L, the only prime ideal is the valuation ideal
pL.

An element of a p-adic field L with L-valuation 1 is called a uniformizer of L.
We shall denote it by πL. It is unique up to multiplication by units. Consequently,
every x ∈ L is expressed as

x = π
vL(x)
L u
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for some u ∈ O×L . If we make a choice of the uniformizer, u is unique. It holds that
pL = πLOL. We deduce that for every ideal I of OL, there is a unique e ∈ Z≥0 such
that I = pe

L. In the case of Zp, the uniformizer (up to multiplication by units) is p.
Unlike in the case of extensions of number fields, the extensions of p-adic fields L/K
always admit an integral basis. This is because OK is a DVR, and hence a PID.

Adic completions of number fields

It is possible to describe p-adic fields as completions of number fields. Let K be a
number field and let p be a prime of K. For each a ∈ K×, let vp(a) be the exponent of
p at the factorization of the fractional ideal aOK. Together with the rule vp(0) = ∞,
this defines a function vp : K −→ R∪ {∞}which turns out to be a discrete valuation
on K. Let Kp be the completion of K with respect to the absolute value coming
from vp. It turns out that Kp is a p-adic field, where p is the rational prime under
p. Conversely, every p-adic field is the completion of some number field (see [LL07,
Chapter 25, F3]). The valuation ring of Kp is the completion OK,p of OK with respect
to p, that is, the result of adjoining to OK all limits of Cauchy sequences in OK.

If L is a finite Galois extension of K, then

Lp := L⊗K Kp
∼= ∏

P|pOL

LP,

where P runs through the primes of L dividing pOL. In particular, Lp is a field (in
which case, it is a p-adic field) if and only if p is non-split in L. At the integral level,
we have

OL,p := OL ⊗OK OK,p
∼= ∏

P|pOL

OL,P

(see [FT92, Theorem 17]). Note that OL,p is already defined when Lp is a field as the
ring of integers of Lp, but this is consistent with the definition above.

2.3.2 Ramification at extensions of p-adic fields

Since the valuation rings of p-adic fields contain a unique prime ideal, the ramifi-
cation theory for extensions of p-adic fields can be seen, roughly speaking, as an
analogue of the one for number fields with a unique prime ideal. For this reason,
we will talk of ramification of extensions, rather than ramification of primes.

Definition 3.2.25. Let L/K be an extension of p-adic fields.

1. The ramification index of L/K, denoted e(L/K), is the integer number defined by
the equality pKOL = p

e(L/K)
L .

2. The residue class degree of L/K, denoted f (L/K), is defined as the degree of the
extension κL/κK of residue fields.

We list a couple of facts that are as in the case of number fields.

Proposition 3.2.26. 1. Let K ≤ E ≤ L be a tower of p-adic fields. Then

e(L/K) = e(L/E)e(E/K), f (L/K) = f (L/E) f (L/K).
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2. Let L/K be an extension of p-adic fields. Then

[L : K] = e(L/K) f (L/K).

Now, we set some terminology related with ramification following the style of
Definition 3.2.16.

Definition 3.2.27. Let L/K be an extension of p-adic fields. We say that L/K is:

1. Ramified, if e(L/K) > 1. Otherwise, we say that L/K is unramified.

2. Totally ramified, if e(L/K) = [L : K].

3. Tamely ramified, if p ∤ e(L/K). Otherwise, we say that L/K is wildly ramified.

The condition that L/K is unramified means equivalently that f (L/K) = [L : K].
Then the extension of residue fields κL/κK is as large as possible, and it is Galois be-
cause residue fields are finite. One can prove that in this case the K-automorphisms
of L identify with the elements of Gal(κL/κK). From this, one can reach the follow-
ing important conclusion.

Proposition 3.2.28. Every unramified extension of p-adic fields is cyclic (in particular,
Galois).

On the other side, totally ramified extensions are those for which f (L/K) = 1,
so the extensions of residue fields is trivial. In that case, we have that OL = OK[πL],
that is, the valuation ring OL is generated by a uniformizer πL as an OK-algebra.
There is a sufficient condition for this situation, which is convenient in practice.

Proposition 3.2.29 ([FT92], Theorem 24). Let L/K be an extension of p-adic fields. If
α ∈ L is a primitive element of L/K which is a root of some πK-Eisenstein polynomial, then
L/K is totally ramified and α is a uniformizer of L.

For example, the 3-adic field L = Q(α) with α3 + 3 = 0 is totally ramified and
has α as uniformizer.

Recall from Theorem 3.2.17 that the rational primes dividing the discriminant of
a number field are the ramified ones. This result can be translated to the setting of
p-adic fields, but the uniqueness of prime ideal makes the situation much simpler:
the discriminant of an extension of p-adic fields is a power of the prime ideal, and it
will be the full ring of integers if and only if the extension is unramified.

3 Hopf-Galois module theory over fields

3.1 The Galois case

Recall that normal basis theorem asserts that every finite and Galois extension ad-
mits a normal basis, that is, a basis formed by the Galois conjugates of a single
element. Equivalently, the top field is free of rank one as a module over the ground
field. Now, assume that L/K is a Galois extension associated to Dedekind domains
and assume thatOL isOK-free. Then, we may wonder whether there is some normal
basis for L/K which is integral, or equivalently, if OL is free as an OK[G]-module,
where G = Gal(L/K). The answer is that not in general.
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Example 3.3.1. Let L = Q(
√

2), which is a Galois extension over Q with group
G = ⟨σ⟩, σ(

√
2) = −

√
2. Suppose that there is some α ∈ L such that OL = Z[G] · α.

We know that OL = Z[
√

2], so 1 ∈ Z[G] · α. Let a, b ∈ Z be such that α = a + b
√

2.
Then there are λ, µ ∈ Z such that

1 = λ(a + b
√

2) + µ(a− b
√

2) = (λ + µ)a + (λ− µ)b
√

2.

Therefore, {
(λ + µ)a = 1,
(λ− µ)b = 0.

From the second equality we deduce that λ = µ. Carrying this to the first one, we
get 2λa = 1. This implies that λ = 1

2a ∈ Z with a ∈ Z, which is a contradiction.
Hence no normal basis of L/Q is integral.

However, there are extensions where it is the other way around.

Example 3.3.2. Let L = Q(
√

5). As in the previous example, the Galois group G
is generated by the order 2 automorphism σ :

√
5 7→ −

√
5. However, in this case,

OL = Z
[

1+
√

5
2

]
. Now, we have that

1 =
1 +
√

5
2

+
1−
√

5
2

=
1 +
√

5
2

+ σ
(1 +

√
5

2

)
.

Hence the normal basis {1 +
√

5
2

, σ
(1 +

√
5

2

)}
for L/Q is also integral.

We put the natural name for bases with this property.

Definition 3.3.3. Let L/K be an extension associated to Dedekind domains. A normal
integral basis (NIB) is a normal basis for L/K that in addition is integral.

By definition, normal integral bases only arise when OL is OK-free (which in-
volves no restriction for the p-adic case). On the other hand, it is immediate that
L/K admits a NIB if and only if OL is free as an OK[G]-module. Since both OL
and OK[G] are free OK-modules of rank [L : K], if OL is free as an OK[G]-module,
necessarily it is of rank one.

Let L/K be a finite and Galois extension of number fields and let p be a prime of
K. Recall that the completion Kp is a p-adic field with valuation ringOK,p. Moreover,
OK,p[G] = OK[G]⊗OK OK,p. We know that Lp is a field if and only if p is non-split
in L, and in that case, OL,p = OL ⊗OK OK,p. Even if Lp is not a field, we can define
OL,p := OL ⊗OK OK,p. Now, OL,p admits a natural structure of OK,p[G]-module, and
we may wonder whether it is free.

Definition 3.3.4. Let L/K be a Galois extension of number fields. We say that OL is
OK[G]-locally free if OL,p is free as an OK,p[G]-module for every prime p of K.
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Note that for every prime p of K, OK,p is a flat OK-module. Hence, for a Galois
extension of number fields L/K with group G, ifOL isOK[G]-free, thenOL isOK[G]-
locally free. The converse in general does not hold.

The existence of a NIB for extensions of p-adic fields was characterized by Emmy
Noether in [Noe32].

Theorem 3.3.5 (Noether). An extension of p-adic fields admits a normal integral basis if
and only if it is tamely ramified.

In the case of G-Galois extensions of number fields L/K, Noether’s theorem says
that OL is OK[G]-locally free if and only if L/K is tamely ramified.

Theorem 3.3.5 is satisfactory in the sense that it provides a characterization for a
behavior for the ring of integers in an extension of p-adic fields, which is an optimal
result from a point of view. But at the same time it is unsatisfactory, because its
scope is very limited; namely, it does not capture wildly ramified extensions.

3.2 Associated orders in Hopf-Galois extensions

It is possible to broaden the range of extensions under study by replacing OK[G] by
a suitable algebraic structure to serve as the ground ring for a module structure for
OL. That suitable object is an OK-order in a K-algebra.

Definition 3.3.6. Let K be the fraction field of a Dedekind domain OK and let A be a K-
algebra. We say that a unitary subring A of A is an OK-order in A if:

1. A is finitely generated as an OK-module.

2. A⊗OK K = A.

If L/K is a Galois extension with group G, OK[G] is an OK-order in K[G] acting
onOL. But instead, we consider directly a more general situation. Let L/K be an H-
Galois extension associated to Dedekind domains. Then, we can look for OK-orders
in H acting on OL. If L/K is separable, we have the following analogue of OK[G].

Proposition 3.3.7. Let L/K be a (G, G′)-separable H-Galois extension associated to Dedekind
domains. Let N be the regular and G-stable subgroup of Perm(G/G′) such that H =

L̃[N]G. Then OL̃[N]G is an OK-order in H.

Proof. First, note that since the Galois action leaves algebraic integers invariant in-
side a field, OL̃[N]G is well defined. On the other hand, OL̃[N]G ⊂ OL̃[N], which
is OK-finitely generated because so is OL̃ by Proposition 3.2.6. Since OK is Noethe-
rian, OL̃[N]G is finitely generated. Finally, we check that OL̃[N]G ⊗OK K = H. Since
OL̃ is a finitely generated torsion-free OK-module, there is d ∈ OK − {0} such that
dL̃ ⊂ OL̃. Now, let W = {w1, . . . , wn} be a K-basis of H. Then for each 1 ≤ i ≤ n, we
have that dwi ∈ OL̃[N] ∩ L̃[N]G = OL̃[N]G, and dW = {dw1, . . . , dwn} is a K-basis
of H because W is and d ̸= 0. This finishes the proof.

For a Galois extension L/K with group G, if we take N = ρ(G) (i.e, the classical
Galois structure), we recover OK[G].

It is immediate that OL̃[N]G acts on OL. However, in many situations presents
severe limitations, just as OK[G] in the Galois case. Instead, we consider the set of
all elements in H acting on OL.

110



Definition 3.3.8. Let L/K be an H-Galois extension associated to Dedekind domains. The
associated order of OL in H is defined as

AH := {h ∈ H | h · OL ⊂ OL}.

If L/K is Galois with group G and H is the classical Galois structure on L/K, we
obtain the associated order in K[G], which we denote by AL/K. Its study lies in the
field of Galois module theory. Since we are working in a more general situation,
everything we are going to state is also valid in that case.

Proposition 3.3.9. The associated order AH of H in L is an OK-order in H.

Proof. Let θ be an H-normal basis generator for L and let Aθ = {h ∈ H | h · θ ∈ OL},
which is clearly anOK-module. From L = H · θ we get immediately that Aθ · θ = OL,
and then the map Aθ −→ OL defined by h 7→ h · θ is an isomorphism ofOK-modules.
Since, by Proposition 3.2.6, OL is finitely generated as an OK-module, we deduce
that so is Aθ. Now, AH ⊂ Aθ and OK is Noetherian, whence it follows that AH is
finitely generated as an OK-module.

It remains to check that AH ⊗OK K = H, or equivalently, AH contains a K-basis
of H. Let N be the permutation subgroup corresponding to H, so that H = L̃[N]G.
From Exercise 4, we have OL̃[N]G ⊆ AH. Now, by Proposition 3.3.7, OL̃[N]G con-
tains a K-basis of H, and hence so does AH.

We may wonder whether the associated order AH is OK-free. The condition that
OL is OK-free is not enough to ensure the AH-freeness of OL.

Example 3.3.10. Let K = Q(
√
−6) and L = K(

√
1 + 2

√
−6). The extension L/K is

quadratic, so it is Galois with group G ∼= C2. It can be checked that OL is OK-free
but AL/K is not.

However, the OK-freeness of AH holds if we assume that OK is a PID (which
holds for instance if K is a p-adic field or a number field with class number 1; in
particular Q).

The ring OL admits a natural structure of AH-module. Suppose that both OL
and AH are free OK-modules. Then both of them have rank [L : K]. If OL is free as
an AH-module, it has rank one. The associated order is the right ground ring of a
module structure for OL, due to the following result.

Proposition 3.3.11. Suppose that both OL and AH are free as OK-modules and let A be an
OK-order in H such that OL is A-free. Then A = AH.

Proof. It is enough to prove that AH ⊆ A, since the other inclusion trivially follows
from the fact that AH is the maximal OK-order in H acting on OL. Suppose that
OL = A · α and let λ ∈ AH. Then λ · α ∈ OL = A · α, so there is some h ∈ A such
that λ · α = h · α. But this is an equality in L = H · α, so necessarily λ = h ∈ A.

This result shows that the associated order AH is the only OK-order over which
OL may possibly be AH-free. However, there are examples with different behaviors.
Thus, we consider the following problem.

Problem 3.3.12. Let L/K be an H-Galois extension associated to Dedekind domains and
suppose that OL and AH are free as OK-modules. Find a necessary and sufficient condition
for OL being free as an AH-module.

111



Research in this area so far has focused in two directions:

1. How freeness in a Hopf-Galois structure affects in others, especially in the case
of Galois extensions.

2. Freeness in Hopf-Galois extensions that are not Galois.

We see a result belonging to the first of these two items.

Proposition 3.3.13. Let L/K be an H-Galois extension associated to Dedekind domains.
Then OL is AH-free if and only if it is AHopp-free.

Proof. It is enough to prove one implication as (Hopp)opp = H. Suppose that OL is
AH-free and let x ∈ OL be an AH-free generator of OL. By Proposition 3.1.8, x is a
free generator of L as an Hopp-module. Thus for each a ∈ AH there is za ∈ Hopp

such that a · x = za · x.
Let us show that za ∈ AHopp . Let y ∈ OL. Since OL is AH-free, there is a unique

b ∈ AH such that y = b · x. Since the elements of H and Hopp commute by definition
of the latter, we have

za · y = za · (b · x) = b · (za · x) = b · (a · x).

Since a, b ∈ AH, we conclude that za · y ∈ OL.
Let z ∈ AHopp . Then z · x ∈ OL = AH · x, so there is some a ∈ AH such that

z · x = a · x = za · x. Since this lies in L = H · x, necessarily z = za. We obtain that

AHopp = {za | a ∈ AH},

whence x is an AHopp-free generator of OL.

Corollary 3.3.14. Let L/K be a Galois non-abelian extension associated to Dedekind do-
mains. Then OL is AHc-free if and only if AHλ

-free.

We close the section with an interaction between freeness over an associated or-
der and induced Hopf-Galois structures. Let E/K be a Galois extension with group
G = J ⋊ G′ and call L = EG′ and M = EJ . Recall by Proposition 2.5.30 that an in-
duced Hopf-Galois structure on E/K is of the form H = H1 ⊗K H2, where H1 (resp.
H2) is a Hopf-Galois structure on L/K (resp. M/K). We may wonder if the same
relation holds for the corresponding associated orders, that is, AH = AH1 ⊗OK AH2 .
The answer is negative in general, but there is a sufficient condition.

Definition 3.3.15. We say that two extensions L1/K and L2/K associated to Dedekind
domains are arithmetically disjoint if they are linearly disjoint and their discriminants
are coprime.

Proposition 3.3.16 ([FT92], Chapter III, (2.13)). If two field extensions L1/K and L2/K
are arithmetically disjoint, then OL1L2 = OL1 ⊗OK OL2 .

Under arithmetic disjointness, the freeness over the associated order in an in-
duced Hopf-Galois structure behaves as one could expect.
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Theorem 3.3.17. Let E/K be a Galois extension associated to Dedekind domains with group
G = J ⋊ G′ and call L = EG′ and M = EJ .Suppose that OK is a PID and that L/K and
M/K are arithmetically disjoint. Let H = H1 ⊗K H2 be an induced Hopf-Galois structure
on L/K. Then:

1. AH = AH1 ⊗OK AH2 .

2. If OL is AH1-free and OM is AH2-free, then OE is AH-free.

Note that 2 follows easily from 1 by using Proposition 3.3.16. The same result
also yields easily that AH1 ⊗OK AH2 ⊆ AH. However, the converse inclusion is not
trivial. A complete proof can be found at [GR22b, Section 5], and consists in apply-
ing a method to build a basis of the associated order in a Hopf-Galois structure. An
alternative proof is offered at [Tru25, Proposition 6.5] using techniques related with
skew braces, algebraic structures with a ring-like definition (but a twisted distribu-
tive property) that were introduced so as to construct set-theoretical solutions to the
Yang-Baxter equation. This is just another one among the endeless applications of
the connection between skew braces and Hopf-Galois structures hinted by Bachiller
at [Bac16] and formalized in the appendix by Byott and Vendramin at [SV18].

If G = J × G′ and H1 (resp. H2) is the classical Galois structure on L/K (resp.
M/K), Exercise 8 from Section 6.2 yields that H is the classical Galois structure on
L/K. If we specialize Theorem 3.3.17 to this case, we get that AE/K = AL/K ⊗OK
AM/K. This was previously stated at [BL96, Lemma 5], but without the restriction
that OK is a PID.

4 Hopf-Galois module theory over rings

The study of Problem 3.3.12 concerns extensions of Dedekind domains whose frac-
tion fields are a Hopf-Galois extension. In this section, we present some notions and
results belonging to Hopf-Galois module theory that focus rather in the rings than
in the fields. In some cases, we can actually remove the fields from the picture. The
main (but not unique) source is [Chi00, Chapter 3].

As in Chapter 1, we fix a commutative ring R with unity.

4.1 H-Galois extensions of rings

First, we establish a Hopf-Galois condition for extensions of rings. It has the same
flavor as the one for field extensions, but we require both the ring extension and
the Hopf algebra to be finite (finitely generated and projective). Namely, let H be a
cocommutative R-Hopf algebra and let S be a commutative R-algebra, both finite as
R-modules.

Definition 3.4.1. We say that S is H-Galois if there is an R-linear action · : H ⊗ S −→ S
endowing S with left H-module algebra structure such that the canonical map j : S⊗H −→
EndR(H) is an R-linear isomorphism.

As already mentioned, we have a normal basis theorem in this context.

Theorem 3.4.2. Suppose that R is complete, local and Noetherian. If S is H-Galois, then it
is H-free.
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The proof of Theorem 3.1.3 remains valid for this case, since the hypotheses im-
posed on R are the ones needed so that Krull-Schmidt-Azumaya theorem can be
applied.

Remark 3.4.3. If S is R[G]-Galois for some finite group G, we say that S is a Ga-
lois extension of R. Several characterizations for this condition can be consulted at
[Chi00, (2.5)]. One of them is that for every maximal ideal m of S and every σ ∈ G,
σ ̸= 1G, there is some s ∈ S such that σ(s)− s /∈ m. If S and R are rings of integers
of number fields L and K, this is equivalent to the condition that all primes p of K
being unramified in L. Likewise, if the fields are p-adic, the equivalence is with L/K
being unramified.

We know that j : L⊗K H −→ EndR(S) is an homomorphism of R-modules. It is
possible to introduce an alternative internal product on S⊗ H so that j becomes a
homomorphism of R-algebras.

Definition 3.4.4. The smash product S#H of S and H is the R-algebra with underlying
R-module S⊗R H and multiplication given by

(s#h)(t#h′) = ∑
(h)

s(h(1) · t)#h(2)h
′.

It is easy (but long) to check that this product endows S#H with R-algebra struc-
ture.

Proposition 3.4.5. The map j : S#H −→ EndR(S) is a homomorphism of R-algebras.

Proof. If s⊗ h, t⊗ h′ ∈ S#H, then for all u ∈ S,

j(s#h) ◦ j(t#h′)(u) = j(s#h)(t(h′ · u))
= s(h · (t(h′ · u)))

= s

∑
(h)

(h(1) · t)(h(2) · (h′ · u))


= ∑

(h)
s(h(1) · t)((h(2)h′) · u)

= ∑
(h)

j(s(h(1) · t)#h(2)h
′)(u)

= j
(

∑
(h)

s(h(1) · t)#h(2)h
′
)
(u)

= j((s#h)(t#h′))(u).

Thus, j(s#h) ◦ j(t#h′) = j((s#h)(t#h′)).

Since H acts on S, we can consider the elements that are fixed in the sense of
actions from Hopf algebras.

Definition 3.4.6. The fixed subring of S by H is defined as

SH = {s ∈ S | h · s = εH(h)s for all h ∈ H}.
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In the case that L/K is an H-Galois field extension, we have that LH = K. There
is an analogous result for the case of rings.

Lemma 3.4.7. Let R be a commutative ring with unity and let S be a commutative R-
algebra which is finite as an R-module. The center of EndR(S) is formed by the homothecies
by elements of uS(R).

Proof. Let ϕ ∈ Z(EndR(S)). By definition, ϕ commutes with all the R-endomorphisms
of S; in particular it commutes with the ones of the form x 7→ sx, where s ∈ S. We
get that sϕ(x) = ϕ(sx) for all s ∈ S, so ϕ ∈ End(S). Hence, ϕ(x) = ϕ(1S)x for all
x ∈ S.

Call t = ϕ(1S). We shall prove that t ∈ uS(R). For each f ∈ S∗, let ψ f : S −→ S
be defined by ψ f (x) = f (x)1S. Then ψ f ∈ EndR(S), so ϕ ◦ ψ f = ψ f ◦ ϕ. Given x ∈ S,

ϕ ◦ ψ f (x) = ϕ( f (x)1S) = f (x)t,

ψ f ◦ ϕ(x) = f ◦ ϕ(x)1S = f (tx)1S.

We get t f (x) = f (tx)1S for all f ∈ S∗ and s ∈ S.
Let {si, fi}n

i=1 be a projective coordinate system of S. For each 1 ≤ j ≤ n, let
{akj}n

k=1 ⊂ R be such that tsj = ∑n
k=1 akjsk. Applying fi for each 1 ≤ i ≤ n, we get

fi(tsj) = ∑n
k=1 akjδik = aij. The unit map uS maps this equality to fi(tsj)1S = aij1S.

Now, by the previous paragraph,

fi(tsj)1S = t fi(sj) = tδij.

Hence tδij = aij1S for all 1 ≤ i, j ≤ n, whence t = aii1S ∈ uS(R) for every 1 ≤ i ≤ n,
finishing the proof.

Proposition 3.4.8. If S is an H-Galois extension, then SH = uS(R).

Proof. Let r ∈ R. Then, for all h ∈ H,

h · uS(r) = h · (r1S) = r(h · 1S) = rεH(h)1S = εH(h)uS(r).

This proves that uS(R) ⊆ SH. Let us prove the converse. Let s ∈ SH. Then, for all
t#h ∈ S#H,

(s#1)(t#h) = st#h

= st#

∑
(h)

εH(h(1))h(2)


= ∑

(h)
ts#εH(h(1))h(2)

= ∑
(h)

t(εH(h(1))s)#h(2)

= ∑
(h)

t(h(1) · s)#h(2)

= (t#h)(s#1),

where we have used that εH(h(1))s = h(1) · s because s ∈ SH. Since j is an homomor-
phism of R-algebras, j(s#1) ◦ j(t#h) = j(t#h) ◦ j(s#1) for all t#h ∈ S#H. We deduce
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that j(s#1) lies in the center of EndR(S). By Lemma 3.4.7, every element in the center
of EndR(S) is multiplication by an element of uS(R). Then, there is r ∈ R such that
for every t ∈ S,

uS(r)t = j(s#1H)(t) = st.

We conclude that s = uS(r) ∈ uS(R).

Rank of a projective module

If L/K is a field H-Galois extension, we know that dimK(L) = dimK(H). In our case,
if we assume that both S and H are R-free, then it follows directly that rankR(H) =
rankR(S). It is even possible to introduce a notion of rank for finite R-modules,
so that we can reach the same conclusion without further restrictions on S and H.
We follow the development in [Bou72, Chapter 2, Section 5]. The key result is the
following:

Theorem 3.4.9 ([Bou72], Chapter 2, Section 5.2, Theorem 1). An R-module M is finite
if and only if the following conditions are satisfied:

1. M is a finitely generated R-module.

2. For every p ∈ Spec(R), the localization Mp is R-free.

3. The function rankR(M) : Spec(R) −→ Z≥0, rankR(M)(p) = rankRp(Mp) is lo-
cally constant when we consider the Zariski topology in Spec(R).

This result seems to be unsatisfactory for our purposes: an R-module may have
many ranks; concretely, one rank for each connected component of Spec(R). To
fulfill this difficulty, we add the hypothesis that Spec(R) is connected. This is equiv-
alent to the absence of non-trivial idempotents in R. We write in short that R is
connected.

With the hypothesis that R is connected, the function rankR(M) is constant, so
that its value does not depend on the prime ideal P we choose.

Definition 3.4.10. Suppose that R is connected and let M be a finite R-module. We define
the rank of M as

rankR(M) := rankRp(Mp),

where p ∈ Spec(R).

The rank of projective modules extends the usual rank for free modules since
the localization of a free module is a free module with the same rank. Moreover, it
has to be finite because the localization of a finite module is a finitely generated free
module.

Note that both rings of integers of number fields and valuation rings of p-adic
fields are connected because they do not possess non-trivial idempotent elements.
On the other hand, local rings are always connected because they do not have non-
trivial idempotents. Then, the notion of rank for a projective module applies in those
situations.

These considerations also have an immediate consequence: some basic relations
that concern the classic notion of rank are naturally generalized to this situation.

Proposition 3.4.11. Suppose that R is connected. Let M and N be finite R-modules. Then:
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1. rankR(M⊗R N) = rankR(M) rankR(N).

2. rankR(M⊕ N) = rankR(M) + rankR(N).

3. rankR(M) = rankR(M∗).

We assume now that R is complete, local and Noetherian (in particular R is con-
nected). From Theorem 3.4.2 we know that S is H-free of rank one, whence it follows
that rankR(S) = rankR(H).

4.2 Integrals of a Hopf algebra

Let H be an R-Hopf algebra. If M is a left H-module, the submodule fixed by H is
defined as

MH = {m ∈ M | hm = ε(h)m for all h ∈ H}.
Now, H is endowed with the trivial left and right H-module structures, so we may
consider its fixed elements under such actions.

Definition 3.4.12. Let H be an R-Hopf algebra.

1. A left integral in H is an element θ ∈ H such that hθ = ε(h)θ for every h ∈ H.

2. A right integral in H is an element θ ∈ H such that θh = ε(h)θ for every h ∈ H.

We shall write
∫ l

H for the set of left integrals of H and
∫ r

H for the set of right
integrals of H.

The trivial left H-module structure of H is given by the product in its underlying
algebra, so

∫ l
H is a two-sided ideal of H:

h′(hθ) = (h′h)θ = ε(h′h)θ = ε(h′)ε(h)θ = ε(h′)hθ =⇒ hθ ∈
∫ l

H
,

h′(θh) = (h′θ)h = ε(h′)θh =⇒ θh ∈
∫ l

H
.

Definition 3.4.13. We say that an R-Hopf algebra H is unimodular if its module of left
integrals coincides with its module of right integrals.

If an R-Hopf algebra H is commutative or it is a finite R-group algebra, then it is
unimodular.

Example 3.4.14. Let G be a finite group and let us consider the R-Hopf algebra R[G].
Let θ = ∑σ∈G σ. Then, for τ ∈ G,

θτ =

(
∑

σ∈G
σ

)
τ = ∑

σ∈G
σ τ = θ = εR[G](τ)θ,

and similarly,
τθ = θ = εR[G](τ)θ.

Since G is a basis of R[G] and multiplication by θ is R-linear, it is true for every
element of R[G]. Then, θ is both left and right integral of R[G]. A straightforward
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computation shows that in fact
∫ r

R[G] and
∫ l

R[G] are generated by θ, so they coincide.
On the other hand, we consider the R-Hopf algebra R[G]∗. Recall that R[G]∗ is free
with basis {eσ}σ∈G, where, eσ(τ) = δσ,τ. From this basis, e1 is both left and right
integral of R[G]∗. Indeed,

eσe1 = δ1,σe1 = εR[G]∗(eσ)e1.

Again, this integral generates
∫ l

R[G]∗ and
∫ r

R[G]∗ , from which we deduce that they
coincide. Thus, R[G] and R[G]∗ are both unimodular.

Recall that R[G] acts on R[G]∗ by means of

h ∗ f = ∑
( f )

f(1)⟨ f(2), x⟩, h ∈ R[G], f ∈ R[G]∗

The comultiplication of R[G]∗ is

∆R[G]∗(eτ) = ∑
gh=τ

eg ⊗ eh, τ ∈ G

Then, given σ, τ ∈ G, we have

σ ∗ eτ = ∑
gh=τ

eg⟨eh, σ⟩ = ∑
gh=τ

egδh,σ = eτσ−1 .

We obtain that R[G]∗ = R[G] ∗ e1 and e1 is a generating integral of R[G]∗. Likewise,
R[G]∗ acts on R[G] by

f ∗ h = ∑
(h)

h(1)⟨ f , h(2)⟩.

Since ∆R[G](τ) = τ ⊗ τ, we get

eσ ∗ τ = δσττ.

We deduce then that R[G] = R[G]∗ ∗ (∑σ∈G σ), where the last element is a generating
integral of R[G].

In the previous example, we have obtained an explicit relation between R[G] and
R[G]∗ in terms of their generating integrals. We can establish similar descriptions of
R-Hopf algebras and their duals because of Larson-Sweedler’s theorem (see [Chi00,
(3.3)]).

Theorem 3.4.15 (Larson-Sweedler). If H is a finite R-Hopf algebra, then

H∗ ∼= H ⊗R

∫ l

H∗

as R-modules.

This theorem is very useful to obtain information about the module of left in-
tegrals of a finite Hopf algebra. Recall that H is finite if and only if so is H∗ and
H∗∗ ∼= H. Then, the theorem applied to H∗ gives H ∼= H∗ ⊗R

∫ l
H.

We apply Larson-Sweedler’s theorem to prove that the module of left integrals
of a finite Hopf algebra is projective with rank one.
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Proposition 3.4.16 ([Chi00], (3.4)). Suppose that R is connected and let H be a finite
R-Hopf algebra. Then,

∫ l
H is a projective R-module of rank one.

Proof. Since H is finite, H∗∗ ∼= H. Then, by Larson-Sweedler’s Theorem,

H ∼= H∗ ⊗R

∫ l

H
. (3.3)

Since R is connected, we can consider the rank n of H, which is a finite number.
Moreover, using Proposition 3.4.11 3, n = rankR(H∗).

Next, for r ∈ R we have

εH∗ ◦ λH∗(r) = εH∗(r 1H∗) = rεH∗(1H∗) = r 1R = r

for all r ∈ R. This says that εH∗ ◦ λH∗ = IdR, so the short exact sequence

0 // Ker(εH∗) // H∗
εH∗ // R // 0

splits. Thus, H∗ ∼= Ker(εH∗)⊕ R. If we carry this to (3.3), we obtain

H ∼= H∗ ⊗R

∫ l

H
∼= (Ker(εH∗)⊕ R)⊗R

∫ l

H
∼=
(

Ker(εH∗)⊗R

∫ l

H

)
⊕
∫ l

H
.

This proves that
∫ l

H is a direct summand of H, which is a projective module, thus a

direct summand of a free module. Hence
∫ l

H is a direct summand of a free module,
so it is projective.

Finally, Proposition 3.4.11 1 applied to (3.3) gives us that
∫ l

H has rank one.

Since projective modules over local rings are free, we deduce the following.

Corollary 3.4.17. Let R be a local ring and let H be a finite R-Hopf algebra. Then,
∫ l

H is a
free R-module of rank one.

4.3 Hopf orders

In this section we introduce Hopf orders, which can be regarded as orders in Hopf
algebras inheriting the Hopf algebra structure. The main guides will be [Tru09,
Section 2.3.1] and [Chi00, Chapter 1, Section 5].

We consider orders in a K-Hopf algebra A, where K is the quotient field of some
Dedekind domain OK, and we want to impose conditions to OK-orders H in A to
inherit the K-Hopf algebra structure of A.

A natural difficulty arises from this purpose: the K-Hopf algebra structure must
give rise to a OK-Hopf algebra structure. Concretely, if H is an OK-order in A, we
want to restrict the structural maps of A to similar maps with OK, in such a way
that asking whether H is an OK-Hopf algebra with these restriction maps makes
sense. In the case of uA : K −→ A, εA : A −→ K and SA : A −→ A, we simply take
the respective restrictions uH = uA|OK , εH = εA|H and SH = SA|H. We require
uA(OK) ⊂ H, εH(H) ⊂ OK, and SA(H) ⊂ H. Note that the first inclusion is always
satisfied by the definition of the unit map of an OK-algebra.
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However, in the case of the maps mA : A⊗K A −→ A and ∆A : A −→ A⊗K A,
we need to embed H ⊗OK H into A⊗K A. This can be done by means of the map

ν : H ⊗OK H −→ A⊗K A
a⊗OK b 7−→ a⊗K b ,

which is clearly an homomorphism of OK-algebras. Let us prove that ν is injective.
We reduce the problem to a local question. Given p ∈ Spec(OK), if H is finitely
generated and projective as an OK-module, then Hp is finitely generated and free as
OK,p-module. Moreover,

(H ⊗OK H)p ∼= Hp ⊗OK,p Hp,

(A⊗K A)p ∼= Ap ⊗K Ap.

Then, the localization of ν at p is νp : Hp⊗OK,p Hp −→ Ap⊗K Ap, and ν is a monomor-
phism if and only if so is νp for all p ∈ Spec(OK). Then, we can assume that OK is
local and H is finitely generated and free over OK. Let {h1, ..., hn} be an OK-basis
of H. Then, {hi ⊗OK hj | i, j ∈ {1, ..., n}} is an OK-basis of H ⊗OK H. The image of
this basis by ν is {hi ⊗K hj | i, j ∈ {1, ..., n}}, which is a K-linearly independent set in
A⊗K A by definition of tensor product. Hence, ν is injective.

Definition 3.4.18. Let K be the fraction field of a Dedekind domain OK. Let A be a finite
K-Hopf algebra and let H be a finite OK-order in A. We say that H is an OK-Hopf order
in A if the K-Hopf algebra structure of A induces an OK-Hopf algebra structure on H, that
is, mA(H ⊗OK H) ⊂ H, ∆A(H) ⊂ H ⊗OK H, εA(H) ⊂ OK and SA(H) ⊂ H.

From this definition it seems tricky to check that a given R-order in A is an R-
Hopf order. However, when A is the K-group algebra K[G] of some finite group G,
there is a criterion that reduces the Hopf order condition to check that the comulti-
plication map can be restricted.

Proposition 3.4.19 ([Tru09], Proposition 2.3.12). Let K be the fraction field of a Dedekind
domain OK. Let G be a finite group and let H be an OK-order in K[G]. If ∆K[G](H) ⊂
H ⊗OK H, then H is an OK-Hopf order in K[G].

Proof. Since H is anOK-order in K[G], the multiplication map mK[G] : K[G]⊗K K[G] −→
K[G] restricts to H: mK[G](H ⊗OK H) ⊂ H. We must check that εK[G] : K[G] −→ K
and SK[G] : K[G] −→ K[G] satisfy εK[G](H) ⊂ OK and SK[G](H) ⊂ H. Let us define:

∆1 = ∆K[G],

∆i = (Idi−1
K[G] ⊗ ∆) ◦ ∆i−1 : K[G] −→ ⊗i+1

j=1K[G], i ≥ 1.

We define also:
m1 = m,

mi = mi−1 ◦ (Idi−1
K[G] ⊗m) : ⊗i+1

j=1 K[G] −→ K[G].

Given g ∈ G,
mi ◦ ∆i(g) = gi+1
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for all i ≥ 1. Then, given z = ∑g∈G kg g ∈ K[G],

mn−1 ◦ ∆n−1(z) = ∑
g∈G

kggn = ∑
g∈G

kg = εK[G](z),

mn−2 ◦ ∆n−2(z) = ∑
g∈G

kggn−1 = ∑
g∈G

kgg−1 = SK[G](z),

where n = |G|. Let h ∈ H. Since ∆i(H) ⊂ ⊗i+1
j=1H by the hypothesis and mi(⊗i+1

j=1H) ⊂
H because H is a K-algebra, we have that εK[G](h) ∈ OK and SK[G](h) ∈ H, which
finishes the proof.

Suppose L is an A-Galois extension of K. In general, the associated order AA
of OL is not an OK-Hopf order in A. In fact, we shall eventually see that this is a
sufficient condition for the AL/K-freeness of OL.

4.4 Maximal orders

Let K be the fraction field of a Dedekind domain OK and let A be a K-algebra. We
can achieve some properties for orders when we impose restrictions to A. In this
section, we will deal with separable K-algebras and the information obtained for
orders concerns the maximality for the inclusion. We follow the exposition at [Tru09,
Section 2.1].

Definition 3.4.20 ([Tru09], Definition 2.1.2). Let K be a field and let A be a K-algebra.
We say that A is:

1. Semisimple, if it is a finite direct sum of minimal left ideals of A.

2. Separable, if for all L extension field of K, L⊗K A is a semisimple L-algebra.

The next result give conditions so as to identify the maximal order in a K-algebra.

Proposition 3.4.21 ([CR87], (26.10)). Let K be the fraction field of a Dedekind domainOK.
Let A be a commutative separable K-algebra. Then, the integral closure O of OK in A is the
unique maximal OK-order in A.

This is useful in our case because of the following.

Proposition 3.4.22 ([Tru09], Proposition 2.3.9). Let K be a field with char(K) = 0 and
let A be a finite commutative K-Hopf algebra. Then A is a separable K-algebra.

In the case of a K-group algebra, it is actually possible to give a characterization
for the maximality of OK-orders.

Proposition 3.4.23 ([CR87], (27.1)). Let G be a finite group of order n. Let K be the fraction
field of a Dedekind domainOK and suppose that char(K) ∤ n. LetO be anOK-order in K[G]
such that OK[G] ⊂ O. Then, O ⊂ n−1OK[G]. In particular, OK[G] is maximal if and
only if n ∈ O∗K.
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Suppose that L is an A-Galois extension of K with A commutative. By Proposi-
tion 3.4.22, A is separable. Hence, using Proposition 3.4.21, there is a unique max-
imal OK-order in A. Note that a necessary and sufficient condition for A being
commutative is that the corresponding permutation subgroup under the Greither-
Pareigis correspondence is abelian. If in addition we assume that K is a p-adic field,
we have the following sufficient condition for freeness.

Proposition 3.4.24 ([Tru09], Proposition 2.5.5). Let K be a p-adic field and let A be a
commutative and separable K-algebra. Let M be the unique maximal OK-order in A. Let S
be a M-module which is finite as anOK-module and such that S⊗OK K is A-free. Then S is
M-free.

From this result we can obtain a sufficient condition for freeness over the associ-
ated order.

Corollary 3.4.25. Let L/K be an A-Galois extension of p-adic fields with A commutative.
If AA is the maximal OK-order in A, then OL is AA-free.

Proof. We show that this is a particular case of Proposition 3.4.24. Indeed, since A is
commutative, it is separable by Proposition 3.4.22, and OL is an AA-module which
is finite as an OK-module. Moreover, OL ⊗OK K = L, which is A-free by Theorem
3.1.3. We obtain that OL is AA-free.

4.5 H-tame extensions

We know that a Galois extension of p-adic fields L/K is tamely ramified if p does
not divide the ramification index e(L/K). In this section we generalize this notion
to the Hopf-Galois setting.

First, we rewrite the tameness condition in such a way that it is natural to replace
the classical Galois structure by an arbitrary Hopf-Galois structure (see [Mar69, The-
oreme II.1]).

Proposition 3.4.26. Let L/K be a Galois extension of p-adic fields. Then L/K is tamely
ramified if and only if TrL/K(OL) = OK.

Let G = Gal(L/K). Given α ∈ L, TrL/K(α) = ∑σ∈G σ(α). Now, we can regard
this definition as the element θ := ∑σ∈G σ ∈ K[G] acting on the element α. Under
this perspective, the condition that TrL/K(OL) = OK means that θOL = OK. Recall
from Example 3.4.14 that θ generates the module of left integrals

∫ l
OK [G], so the char-

acterization for tameness becomes
∫ l
OK [G] ·OL = OK. This motivates the following

definition:

Definition 3.4.27. Let H be a cocommutative R-Hopf algebra and let S be a commutative
R-algebra, both finite as R-modules. Suppose that S is a left H-module algebra and that
SH = uS(R). We say that S is H-tame if:

1. rankR(S) = rankR(H).

2. S is faithful as an H-module.

3.
∫ l

H ·S = uS(R).
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By construction, if L/K is a Galois tamely ramified extension of p-adic fields,
then OL is OK[G]-tame.

Recall that when S is H-Galois, we have that SH = uS(R).

Proposition 3.4.28. Let H be a finite cocommutative R-Hopf algebra and let S be an H-
module algebra. Then,

∫ l
H ·S ⊂ SH.

Proof. Let ξ ∈
∫ l

H ·S. Then, there are θi ∈
∫ l

H, si ∈ S such that ξ = ∑ θi si. Given
h ∈ H,

h · ξ = h ·
(
∑ θi · si

)
= ∑(hθi) · si = ∑ ε(h)θi · si = ε(h) ξ.

This proves that ξ ∈ SH.

Proposition 3.4.28 yields the interpretation that H-tame extensions S are those
for which

∫ l
H ·S are as large as possible.

4.6 Linking notions

We already know from Theorem 3.4.2 that if S is H-Galois then (under the suitable
restrictions to R) S is H-free. In this section, we shall see further logical relations
between the notions we have studied in this section.

4.6.1 H-tame implies H-free

The implication to the left side is proved in two parts, by proving as an intermediate
step that S is H-projective. We need the following lemma about integrals.

Lemma 3.4.29. Let H be an R-Hopf algebra and let θ ∈
∫ l

H. Given x ∈ H,

(x⊗ 1)((IdH ⊗ SH) ◦ ∆H(θ)) = ((IdH ⊗ SH) ◦ ∆H(θ))(1⊗ x).

Proof. The result follows from the next chain of equalities:

(x⊗ 1)((IdH ⊗ SH) ◦ ∆H(θ)) = ∑
(θ)

xθ(1) ⊗ SH(θ(2))

= ∑
(θ,x)

x(1)εH(x(2))θ(1) ⊗ SH(θ(2))

= ∑
(θ,x)

x(1)θ(1) ⊗ SH(θ(2))εH(x(2))

= ∑
(θ,x)

x(1)θ(1) ⊗ SH(θ(2))SH(x(2))x(3)

= ∑
(θ,x)

x(1)θ(1) ⊗ SH(x(2)θ(2))x(3)

= ∑
(x)

(IdH ⊗ SH) ◦ ∆H(x(1)θ)(1⊗ x(2))

= ∑
(x)

(IdH ⊗ SH) ◦ ∆H(εH(x(1))θ)(1⊗ x(2))

= ∑
(x)

(IdH ⊗ SH) ◦ ∆H(θ)(1⊗ εH(x(1))x(2))

= ((IdH ⊗ SH) ◦ ∆H(θ))(1⊗ x).
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Theorem 3.4.30. Suppose that R is a local ring. Let H be a cocommutative R-Hopf algebra
and S an R-algebra, both finite as R-modules, and such that S is an H-module algebra. If S
is H-tame, then S is H-projective.

Proof. Since H is finite and R is local,
∫ l

H is R-free of rank one. Let θ be a generator

of
∫ l

H. Since S is H-tame, we have
∫ l

H S = R, so θ · S = R. Then, there is z ∈ S
such that θ · z = 1. Now, we have that S is R-projective. This implies that H ⊗R S
is H-projective. Indeed, S is direct summand of a free R-module, say L = M ⊕ S.
Then,

H ⊗R L ∼= (H ⊗R M)⊕ (H ⊗R S),

where H ⊗R L is a free H-module. That is, H ⊗R S is a direct summand of a free
H-module, hence H-projective. Let µ : H ⊗R S −→ S, µ(h ⊗ s) = h · s. Then, µ is
clearly surjective and

µ(h′(h⊗ s)) = µ((h′h)⊗ s) = (h′h) · s = h′ · (h · s),

so µ is an epimorphism of H-modules. Then, there is a short exact sequence

0 // Ker(µ) i // H ⊗R S
µ

// S // 0 .

It is enough to show that this sequence splits. Indeed, in that case, S is a direct
summand of H ⊗R S, and hence it is a direct summand of a free H-module, that is,
S is H-projective.

Let ν : S −→ H⊗R S, ν(s) = ∑(θ) θ(1) ⊗ (z(SH(θ(2)) · s)). First, we prove that ν is
an homomorphism of H-modules. Let h ∈ H, s ∈ S. Then,

h · (ν(s)) = h ·

∑
(θ)

θ(1) ⊗ z(SH(θ2) · s)


= ∑

(θ)

(h · θ(1))⊗ z(SH(θ(2)) · s)

= (1⊗ z)

∑
(θ)

(h · θ(1))⊗ SH(θ(2))

 (1⊗ s)

Now, we note that ∑(θ)(h · θ(1)) ⊗ SH(θ(2)) = (h ⊗ 1)((1 ⊗ SH)∆(θ)). By the
previous lemma, this coincides with ((1⊗ SH)∆(θ))(1⊗ h) = ∑(θ) θ(1) ⊗ SH(θ(2))h.
Then,

h · (ν(s)) = (1⊗ z)

∑
(θ)

θ(1) ⊗ SH(θ(2))h

 (1⊗ s)

= ∑
(θ)

θ(1) ⊗ z(SH(θ(2))(h · s))

= ν(h · s),

which proves that ν is an homomorphism of H-modules.
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It remains to check that µ ◦ ν = IdS. Let s ∈ S. Then,

µ ◦ ν(s) = ∑
(θ)

θ(1)(z(SH(θ(2)) · s))

= ∑
θ

(θ(1) · z)(θ(2) · (SH(θ(3)) · s))

= ∑
θ

(θ(1) · z)(ε(θ(2)) s)

= ∑
(θ)

((θ(1)ε(θ(2))) · z) s

= (θ · z) s = s,

as we wanted to prove.

Next, we prove that H-projective implies H-free of rank one. For proving this
we need the following result (see [Sch77]).

Theorem 3.4.31 (Schneider). Let R be a local domain such that K = Frac(R) has cha-
rasteristic zero. Let H be a finite cocommutative R-Hopf algebra and let P, Q be finite left
H-modules. If K⊗R P ∼= K⊗R Q as K⊗ H-modules, then P ∼= Q as H-modules.

Proposition 3.4.32. Let K be a p-adic field and let L be an A-Galois extension of K (in the
sense of Definition 3.4.1). Let S be an OK-order in L. If H is an OK-Hopf order in A acting
on S and S is H-projective, then S is H-free.

Proof. We check that the situation given in the statement is actually a particular case
of the one in Schneider’s theorem.

The valuation ring OK is a Dedekind domain and is local, in particular it is a
local domain. Since K is p-adic, it has characteristic zero.

We have that A is cocommutative and finite dimensional because L is A-Galois.
Since H is an OK-Hopf order and inherits the Hopf algebra structure of A, so H is
cocommutative as an OK-Hopf algebra and finite as an OK-module. In addition, H
is a finite module over itself.

On the other hand, since S is an OK-order in L, it is finitely generated as an OK-
module. Now, we know by Theorem 3.4.30 that there is an epimorphism µ : H ⊗R
S −→ S of H-modules, so S is finitely generated as H-module. We also know by the
hypothesis that S is H-projective, so S is finite as an H-module.

By Theorem 3.4.2, L is A-free of rank one, that is, L ∼= A as A-modules. Then,

K⊗R H ∼= A ∼= L ∼= K⊗R S

as K ⊗R H-modules. By Schneider’s theorem, S ∼= H as H-modules, that is, S is
H-free of rank one.

Then, joining Theorem 3.4.30 and Proposition 3.4.32, we obtain the following:

Corollary 3.4.33. Let K be a p-adic field and let L be an A-Galois extension of K. Let S be
an OK-order in L. If H is an OK-Hopf order in A acting on S and S is H-tame, then S is
H-free.

In particular, when we take L to be a field extension of K and S to be its valuation
ring OL, we obtain the desired implication.

Corollary 3.4.34. Let L/K be an A-Galois extension of p-adic fields. Suppose that there
is an OK-Hopf order H in A such that OL is H-tame. Then, OL is H-free (and hence,
H = AA).
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4.6.2 Hopf order implies freeness

Consider an A-Galois extension L/K of p-adic fields. Since the associated order in
A is the only OK-order in A over which OL can be free, is the object we work with
in this section.

Theorem 3.4.35 ([Chi00], (13.3)). Let L/K be an A-Galois extension of p-adic fields. If
AA is an OK-Hopf order in A, then OL is AA-tame.

Proof. Since OK is local,
∫ l
AA

is OK-free of rank one. Let θ be an OK-generator of I.

Since L/K is A-Galois, LA = K. Then we can prove easily that OAA
L = uOL(OK) =

OK. By Proposition 3.4.28, θ · OL ⊆ OAA
L , whence θ · OL is an ideal of OK. If πK is an

uniformizer of K, this means that θ · OL = πi
KOK for some i ≥ 0, so θ

πi
K
· OL = OL.

In particular, θ
πi

K
∈ AA.

Let us check that θ
πi

K
is actually a left integral of AA. Indeed, given α ∈ AA, since

θ is a left integral, θ
πi

K
α =

εAA (θ)

πi
K

α. Now,

εAA(θ) = εAA

(
θ

πi
K

πi
K

)
= εAA

(
θ

πi
K

)
εAA(π

i
K) = εAA

(
θ

πi
K

)
πi

K,

and joining this with the last expression gives θ
πi

K
α = εAA

(
θ

πi
K

)
α, as desired.

Then, we have proved that θ
πi

K
∈
∫ l
AA

, while θ is a generator of
∫ l
AA

as R-module.

Then, i = 0 and θOL = OK, so OL is AA-tame.

From Corollary 3.4.34, we get the following.

Corollary 3.4.36. Let L/K be an A-Galois extension of p-adic fields. If the associated order
AA is an OK-Hopf order, then OL is AA-free.

4.6.3 H-Galois implies H-tame

We will use a result which is interesting by itself: H-Galois implies H-tame. To prove
this we need the following technical result.

Proposition 3.4.37 ([Chi00], (14.3)). Let H be a finite cocommutative R-Hopf algebra and
let S be a finite R-algebra which is H-Galois. Let E = EndR(S). For any E-module M,
consider the action of H on M induced by the isomorphism M ∼= S⊗ H, and let MH be the
fixed submodule in the Hopf algebra sense. Then there is an isomorphism of R-modules

MH ∼=
∫ l

H
·M.

Now, the result that H-Galois implies H-tame is an easy corollary.

Corollary 3.4.38. Let H be a finite cocommutative R-Hopf algebra and let S be an H-Galois
extension of R. Then, S is H-tame.
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Proof. We must check the conditions of tameness. First, since S is an H-Galois exten-
sion of R, the isomorphism H ⊗R S ∼= EndR(S) yields that rankR(H) = rankR(S).
Moreover, since S is H-Galois, it is H-faithful. Finally, by applying the previous re-
sult to the E-module S, we obtain that SH ∼=

∫ l
H ·S. Since S is H-Galois, SH = R, so∫ l

H ·S = R.

4.6.4 H-free implies H-tame

This follows easily from Corollary 3.4.38.

Corollary 3.4.39. Suppose that R is local. Let H be a finite cocommutative R-Hopf algebra
and let S be an H-module algebra with SH = R. If S is H-free of rank one, then S is H-tame.

Proof. Since H is finite, we have H ∼= H∗ as H-modules. By the hypothesis, S ∼= H
as H-modules, so we have that S ∼= H∗ as H-modules. Now, we have that H∗ is
H-Galois, so by Corollary 3.4.38, H∗ is H-tame. Hence

∫ l
H ·H

∗ = R. The previous

isomorphism maps this equality to
∫ l

H ·S = R, proving that S is H-tame.

From Corollaries 3.4.33 and 3.4.39, we obtain the following Hopf-Galois version
of Noether’s theorem.

Theorem 3.4.40. Let L/K be an A-Galois extension of p-adic fields. Let S be an OK-order
in A. For an OK-Hopf order H in A acting on S, S is H-tame if and only if S is H-free.

4.6.5 Equivalence between notions

If the Hopf algebra we are working with is a local ring, then the three notions of
H-Galois, H-tame and H-free are equivalent. Namely:

Theorem 3.4.41 ([Chi00], (14.7)). Suppose that R is local. Let H be a local cocommutative
R-Hopf algebra, and let S be a finite R-algebra which is also a faithful H-module algebra.
The following are equivalent:

1. S is H-tame.

2. S is H-free.

3. S is H-Galois.

5 The ring of integers in extensions of p-adic fields

In this part we focus in Problem 3.3.12 for extensions of p-adic fields. Namely, for
an H-Galois extension L/K of p-adic fields, we are interested in criteria so as to
characterize the freeness of OL as an AH-module. The available results in literature
will show that the behavior of such a module depends heavily on the ramification
of the extension.
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5.1 Further notions of ramification theory

We present here the notions from ramification theory on extensions of p-adic fields
that will be needed in what follows. Namely, we consider higher ramification group
and ramification breaks, whose study is commonly known as higher ramification
theory. The main reference is [Ser79, Chapter IV].

5.1.1 Higher ramification groups

Let L/K be a Galois extension of p-adic fields with group G.

Definition 3.5.1. For an integer i ≥ −1, the i-th ramification group of L/K is defined as
G−1 := G if i = −1 and, for i ≥ 0,

Gi := {g ∈ G | vL(g(x)− x) ≥ i + 1 for all x ∈ OL}.

The condition that vL(g(x)− x) ≥ i + 1 for all x ∈ OL can be rewritten in several
equivalent ways:

1. vL(g(a)− a) ≥ i + 1, where OL = OK[a].

2. g acts trivially on OL/pi+1
L .

Note that if L/K is tamely ramified, πL is an OK-algebra generator of OK.
It is clear that Gi ⊇ Gi+1 for every i ≥ −1 and that Gi is trivial for i large enough

(namely, i ≥ maxg∈G(g(x)− x); see [Ser79, Chapter IV, Proposition 1]). Therefore,
{Gi}∞

i=−1 is a filtration of G, called the chain of ramification groups of L/K.

5.1.2 Relationship with the ramification

The group
G0 = {g ∈ G | vL(g(x)− x) ≥ 1 for all x ∈ L}

is called the inertia group of L/K. Accordingly, the fixed subfield LG0 is called the
inertia field of L/K. Given g ∈ G, g ∈ G0 if and only if g acts trivially on the residue
field κL. Hence, the natural group epimorphism G −→ Gal(κL/κK) has kernel G0.
Consequently, |G0| = e(L/K).

Corollary 3.5.2. The extension L/K is:

1. Unramified, if and only if G0 is trivial.

2. Totally ramified, if and only if G0 = G.

3. Tamely ramified, if and only if p ∤ |G0|.

We list further properties of the ramification groups.

Proposition 3.5.3 ([Ser79], Chapter IV, Corollaries 3 and 4). Let L/K be a Galois exten-
sion of p-adic fields with group G.

1. For each i ≥ 0, Gi+1 is a normal subgroup of Gi, and Gi/Gi+1 is a direct product of
cyclic groups of order p.
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2. G1 is a p-group.

3. G0 is a semidirect product of G1 and a subgroup of G whose order is coprime to p.

Moreover, we have the following important result on G.

Proposition 3.5.4 ([Ser79], Corollary 5). The Galois group of a Galois extension of p-adic
fields is solvable.

From the result that G1 is a p-group it follows immediately that G1 = {1} if and
only if L/K is tamely ramified.

Definition 3.5.5. We say that L/K is weakly ramified if G2 = {1}.

When we are working with Galois subextensions of L/K, we have the following
useful result:

Proposition 3.5.6 ([Ser79], Chapter IV, Proposition 2). Let H be a subgroup of G. Then
Hi = Gi ∩ H for all i ≥ −1.

5.1.3 Ramification breaks

Let E/K be a Galois extension of p-adic fields with group G and consider its chain
of ramification groups {Gi}∞

i=0.

Definition 3.5.7. A ramification break (or jump, or number) of E/K is a positive integer t
such that Gt+1 ⊊ Gt.

If L/K is totally ramified, then G0 = G, and on the other hand G1 is a p-group.
Thus, if in addition G is not a p-group, we have that G1 ⊊ G0. Since this jump is
of a different nature of the other ones, we do not accept it as a ramification break.
Moreover, since the chain of ramification groups stabilize, the ramification breaks
exist and are finitely many.

Suppose that vp([E : K]) = 1. Then, E/K admits a single ramification break t.
We shall denote it by t(E/K) if ramification breaks of other extensions arise in the
context. If H is a subgroup of G and L = EH, from Proposition 3.5.6 we have that
t(E/K) = t(E/L).

Proposition 3.5.8. Let E/K be a Galois extension of p-adic fields with [E : K] = rp, p ∤ r.
Then:

1. 1 ≤ t ≤ rpe
p−1 .

2. p | t if and only if t = rpe
p−1 .

Our next goal is to define the notion of ramification break for a non-necessarily
Galois extension. We do it by means of the Herbrand function (see [Ser79, Chapter
IV, §3]).

Definition 3.5.9. The Herbrand function of a Galois extension E/K is the function
φE/K : R≥−1 −→ R≥−1 defined as

φE/K(u) =
∫ u

0

1
[G0 : Gt]

dt,

where Gu = G⌊u⌋ for all u ∈ R.
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Theorem 3.5.10 (Hasse-Arf). If G is an abelian group and t is a ramification break, then
φE/K(t) is an integer.

It holds that φE/K is continuous and strictly increasing (see [Ser79, Chapter IV, §3,
Proposition 12 a)]), therefore bijective; call ψE/K its inverse. If L is an intermediate
field of E/K, by [Ser79, Chapter IV, §3, Proposition 15], we have transitivity formulas

φE/K = φL/K ◦ φE/L, ψE/K = ψE/L ◦ ψL/K. (3.4)

Now, let L/K be any extension of p-adic fields. The definition of Herbrand func-
tion is translated naturally to this setting.

Definition 3.5.11. The Herbrand function for L/K is the function

φL/K := φE/K ◦ ψE/L,

where E is a field Galois extension of K such that L ⊂ E.

Note that if E is any Galois field extension of K with L ⊂ E, we have

φE/K ◦ ψE/L = φL/K ◦ φE/L ◦ ψE/L = φL/K,

which is independent of E. Then Definition 3.5.11 is correct.

Definition 3.5.12. Let L̃ be the normal closure of L/K. A ramification break for L/K is
defined as the image of a ramification break of L̃ by φL/K.

A ramification break for a non-Galois extension is not necessarily an integer
number, but in any case it is a p-adic integer.

5.2 The case of tamely ramified extensions

Recall that tamely ramified extensions of p-adic fields are those whose ramification
index is not divisible by p. We shall prove that for abelian Hopf-Galois structures
(those whose corresponding permutation subgroup is abelian), there is freeness over
the associated order.

We start with the most simple case of tameness: the one of unramified extensions,
defined by the condition that the ramification index is 1.

Let L/K be an unramified extension of p-adic fields. Recall from Proposition
3.2.28 that L/K is Galois. In this section, we see that OL is AH-free for any Hopf-
Galois structure H on L/K.

Proposition 3.5.13 ([Chi+21], Proposition 11.24). Let L/K be an unramified extension
of p-adic fields with Galois group G and let H = L[N]G be a Hopf-Galois structure on L/K.
Then AH = OL[N]G and OL is AH-free.

Proof. From [Tru13, Theorem 2.1], we have that OL[N]G is an OK-Hopf order if and
only if G0 ⊆ StabG(N). Since L/K is unramified, we have that G0 is trivial, so the
criterion is fulfilled. Then, we get that OL[N]G is indeed an OK-Hopf order of H.
Now, θ := ∑η∈N η is a left integral of OL[N]G, and given x ∈ OL, θ · x = TrL/K(x).
Using once again that L/K is unramified, in particular it is tamely ramified, and
then TrL/K(OL) = OK by Proposition 3.4.26. Hence there is some z ∈ OL such that
θ · z = 1. It follows that OL is OL[N]G-tame. By Corollary 3.4.33, we obtain that OL
is OL[N]G-free, so AH = OL[N]G.
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Next, we see the result for a subclass of tamely ramified extensions of p-adic
fields.

Proposition 3.5.14 ([Chi+21], Proposition 11.25). Let L/K be an extension of p-adic
fields such that p ∤ [L : K] and let H = L̃[N]G be an abelian Hopf-Galois structure on L/K.
Then AH = OL̃[N]G and OL is AH-free.

Proof. We know that H is separable by Proposition 3.4.22 and commutative because
N is abelian. By Proposition 3.4.21, H contains a unique maximal OK-order, which
is the integral closure of OK in H. Given z ∈ M, z is integral over OK in H. Since
L̃[N] = L̃⊗K H, z is also integral over OL̃ in L̃[N]. Then, z belongs to the maximal
OL̃-order in L̃[N]. Now, since |N| = [L : K], the hypothesis gives that p ∤ |N|. By
Proposition 3.4.23, the maximalOL̃-order of L̃[N] isOL̃[N], which therefore contains
z. Thus, z ∈ OL̃[N]∩H = OL̃[N]G. This proves that M ⊆ OL̃[N]G. Since in addition
OL̃[N]G ⊆ AH from Exercise 4, the maximality of M yields that M = OL̃[N]G = AH.
By Corollary 3.4.25, OL is AH-free.

Recall from Exercise 8 at Section 6.2 that the induced Hopf-Galois structure from
two classical Galois structures is a classical Galois structure. For Galois tamely ram-
ified extensions of p-adic fields, we have the following more general result.

Proposition 3.5.15. Let E/K be a Galois tamely ramified extension of p-adic fields with
group G. Let H = E[N]G be an abelian Hopf-Galois structure. Write |N| = prm with
gcd(p, m) = 1 and N = N1 × N2 with |N1| = pr and |N2| = m. Let L/K (resp. M/K)
be the degree pr (resp. m) subextension of E/K. Then N1 (resp. N2) gives L/K (resp. M/K)
a Hopf-Galois structure such that H is induced from H1 and H2.

The proof is beyond the scope of what we have seen so far, and can be consulted
at [Chi+21, Proposition 8.22].

Now, we can prove freeness for Galois tamely ramified extensions.

Theorem 3.5.16. Let E/K be a Galois tamely ramified extension of p-adic fields with group
G and let H = E[N]G be an abelian Hopf-Galois structure on E/K. Then AH = OE[N]G

and OE is AH-free.

Proof. Write |N| = prm with gcd(p, m) = 1 and N = N1 × N2 with |N1| = pr and
|N2| = m, and let L/K (resp. M/K) be the degree pr (resp. m) subextension of
E/K. By Proposition 3.5.15, H is the induced Hopf-Galois structure on E/K from
the Hopf-Galois structure on L/K given by N1 and the Hopf-Galois structure on
M/K given by N2. Since N is abelian, all the subextensions of E/K are Galois.
Since in addition L ∩ M = K (because their degrees are coprime), we have that
E = LM. Since E/K is tamely ramified and [L : K] = pr, we see that L/K is un-
ramified. Hence, L/K and M/K are arithmetically disjoint. Now, OL is AH1-free
by Proposition 3.5.13 and OM is AH2-free by Proposition 3.5.14. Applying Theorem
3.3.17 2, we get that OE is AH-free. Finally, the same propositions at each case give
AH1 = OL[N1]

Gal(L/K) = OE[N1]
G and AH2 = OM[N2]

Gal(M/K) = OE[N2]
G, and

Theorem 3.3.17 1 yields AH = AH1 ⊗OK AH2 = OE[N]G, finishing the proof.

Now, we consider non-necessarily Galois tamely ramified extensions of p-adic
fields. Hence, now there is a non-necessarily trivial normal closure, but it turns out
to be unramified over the original extension.
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Lemma 3.5.17 ([Tru18], Proposition 5.2). Let L/K be a tamely ramified extension of p-
adic fields with normal closure L̃. Then L̃/L is unramified, so L̃/K is tamely ramified.

Proof. Call e := e(L/K). Let L0/K be the maximal unramified subextension of L/K,
so that L/L0 is totally ramified. Then, e = [L : L0] and πe

L = vπK for some v ∈
O×L0

. Let ζe be a primitive e-th root of unity and u ∈ L such that ue = v, and call
L′ = L(ζe, u). Since p ∤ e, L′/L is an unramified extension, and hence Galois. Let
π′L := u−1πL ∈ L′. Then (π′L)

e = u−eπe
L = πK, so the polynomial xe − πK ∈ K[x]

splits over L′. Let f ∈ K[x] be a polynomial whose splitting field is the maximal
unramified subextension of L′/K. By definition of normal closure, L̃ is the smallest
Galois extension of K containing L over which both xe− πK and f split. In addition,
L′/L is unramified. Necessarily, L̃ ⊂ L′, whence L̃/L is unramified.

On the other hand, there is the result that for induced Hopf-Galois structures,
freeness over the associated order can be projected to a subextension if the extension
in the middle is tamely ramified.

Proposition 3.5.18. Let E/K be a Galois extension of number or p-adic fields with group
G = J ⋊ G′, where J, G′ are subgroups of G and J is normal. Call L = EG′ , M = EJ ,
and let H be an induced Hopf-Galois structure on E/K from a Hopf-Galois structure H1 on
L/K and a Hopf-Galois structure H2 on M/K. Suppose that E/L is tamely ramified.

1. AH1 = π(AH), where π is projection onto the first component at the level of groups
and extended by linearity.

2. If OE is AH-free, then OL is AH1-free.

This result was originally proved by Truman in [Tru18, Proposition 5.1]. In
[Chi+21, Proposition 11.18], a slightly more general result appears, with a much
shorter proof.

Combining Theorem 3.5.16, Lemma 3.5.17 and Proposition 3.5.18, we can prove
the main result of this section.

Theorem 3.5.19 ([Tru18], Theorem 5.3). Let L/K be a tamely ramified almost classically
Galois extension of p-adic fields. Let H = L̃[N]G be a Hopf-Galois structure with N abelian.
Then AH = OL̃[N]G and OL is AH-free.

Proof. Let M/K be the complement of L/K as an almost classically Galois exten-
sion. Since L/K is tamely ramified, by Lemma 3.5.17, L̃/L is unramified. Hence,
G′ := Gal(L̃/L) is cyclic, so the classical Galois structure on L̃/L is abelian. Now,
from the Hopf-Galois structure H on L/K and the classical Galois structure on L̃/L,
we induce a Hopf-Galois structure H′ on L̃/K whose corresponding permutation
subgroup is N×ΛG′ , where ΛG′ is the set of left translations by elements of G′. This
is an abelian group, so H′ is an abelian Hopf-Galois structure. By Theorem 3.5.16,
OE is AH′-free. Finally, since L̃/L is unramified, in particular it is tamely ramified,
so Proposition 3.5.18 yields that OL is AH-free.

It is currently unknown if Theorem 3.5.19 holds for arbitrary Hopf-Galois struc-
tures, with no restriction on the type.
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5.3 The case of wildly ramified extensions

Now, we consider wildly ramified extensions of p-adic fields. The available results
in literature show that their behavior is much more chaotic than in the tame case,
even if we stick to Galois extensions.

5.3.1 Freeness for Galois extensions of p-adic fields

The main advances for the question of the freeness over the associated order at the
classical Galois structure for Galois extensions of p-adic fields have been nicely sum-
marized in [Tho10, Section 3]. We list here some of the results therein. We omit
instead what is known on this question for extensions of local fields with positive
characteristic; the interested reader can consult [Tho10, Section 4].

Much of what is known in this area lies in Galois extensions of Qp. For many
subfamilies of such extensions, an affirmative answer to Problem 3.3.12 for the clas-
sical Galois structure on L/Qp is known. One of these subfamilies is that of abelian
extensions.

Theorem 3.5.20 (Leopoldt, 1959). Let L/Qp be an abelian extension of p-adic fields. Then
OL is AL/Qp-free.

The proof of this result is beyond the scope of these notes and can be consulted
in [Leo59]. Actually, the following generalization holds (see [Let98, Theorem 1]).

Theorem 3.5.21 (Lettl, 1998). Let L/K be an extension of p-adic fields and suppose that
L/Qp is abelian. Then OL is AL/K-free.

As for families of non-abelian extensions of p-adic fields, an example of affirma-
tive result is as follows:

Theorem 3.5.22 (Bergé, 1972). Let L/Qp be a Galois extension of p-adic fields with Galois
group G ∼= Dp, the dihedral group of order 2p. Then OL is AL/Qp-free.

This is the main result at [Ber72].
Let us weaken the restriction on the ground field K to the condition that K/Qp is

unramified. In this situation, also Bergé proved the following criterion.

Theorem 3.5.23 (Bergé, 1978). Let L/K be a totally ramified cyclic extension of p-adic
fields with K/Qp unramified. Write [L : K] = rpn with p ∤ r and n ∈ Z≥1. Let t1 be the
first ramification break of L/K.

1. If n = 1, OL is AL/K-free.

2. Otherwise, OL is AL/K-free if and only if

rp
p− 1

− t1 <
pn

pn−1 − 1
.

The situation is much trickier when no restriction is imposed on K. One of the
most impressive results in this situation is the following on weakly ramified exten-
sions (see [Joh15, Theorem 1.2]).
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Theorem 3.5.24 (Johnston, 2015). Let L/K be a weakly ramified extension of p-adic fields
with group G. Then AL/K = OK[G][π−1

K TrG0 ] and OL is AL/K-free.

In the case of a cyclic degree p extension L/K of p-adic fields, the freeness is
completely characterized in terms of the ramification break of L/K. This traces back
to the works by F. Bertrandias, J.-P. Bertrandrias and M.-J. Ferton [BBF72; BF72]. We
shall see, however, a more general result in the setting of Hopf-Galois theory.

5.3.2 Degree p extensions of p-adic fields

Let L/K be a ramified degree p extension of p-adic fields. Let L̃ be the normal
closure of L/K and let G = Gal(L̃/K). First, note from Proposition 3.5.4 that G
is solvable. By Theorem 2.3.10, L/K is Hopf-Galois. Thus, we can apply Corollary
2.5.15, obtaining that L/K admits a unique Hopf-Galois structure H, which is almost
classically Galois. If L/K is Galois, H is just the classical Galois structure. The
problem of characterizing the AH-freeness of OL in the general case was solved by
the first author at [Gil24b]. We proceed to sketch the result providing a general
criterion.

The first remark is that we can assume without loss of generality that L̃/K is
totally ramified.

Proposition 3.5.25 ([Gil24b], Proposition 3.4). Let L/K be a ramified degree p extension
of p-adic fields with normal closure L̃ and Hopf-Galois structure H. Let L′ (resp. K′) be the
inertia field of L̃/L (resp. L̃/K). Let H′ := H ⊗K K′. Then:

1. L′/K′ is a degree p extension of p-adic fields with normal closure L̃ and Hopf-Galois
structure H′.

2. OL is AH-free if and only if OL′ is AH′-free.

Note that, since L′ is the inertia field of L̃/L, the degree of L̃/L′ is the order of
the inertia group of L̃/L, that is, the ramification index of L̃/L. Necessarily, L̃/L′ is
totally ramified. On the other hand, L′/K′ is ramified because L/K is. Thus, L̃/K′

is totally ramified. Hence, Proposition 3.5.25 means that if the normal closure of
our degree p extension is not totally ramified, we can take instead the extension of
inertia fields, whose behavior is exactly the same.

From now on, we assume that L̃/K is totally ramified. Let ℓ := t(L/K) be the
ramification break of L/K. Following Definition 3.5.12, it can be checked that

ℓ =
t(L̃/K)

r
,

where r = [L̃ : L]. By Proposition 3.5.8, we have that 1 ≤ t(L̃/K) ≤ rpe
p−1 , where

e := e(K/Qp), and t(L̃/K) = rpe
p−1 if and only if it is divisible by p. As a consequence,

0 < ℓ ≤ pe
p− 1

,

and ℓ = pe
p−1 if and only if ℓ ≡ 0 (mod p) in Zp/pZp.
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Theorem 3.5.26 ([Gil24b], Theorem 1.2). Let L/K be a degree p extension of p-adic fields
whose normal closure L̃ is totally ramified over K. Let H be the unique Hopf-Galois structure
on L/K. Write e for the ramification index of K/Qp, and a for the residue class mod p of the
ramification jump ℓ of L/K.

1. If a = 0, then OL is AL/K-free.

2. If ℓ < pe
p−1 − 1, then OL is AL/K-free if and only if a | p− 1.

3. If ℓ ≥ pe
p−1 − 1, thenOL is AL/K-free if and only if the length of the continued fraction

expansion of a
p is upper bounded by 4.

If we impose that L/K is a Galois extension, then r = 1 and ℓ = t. Replacing
these in Theorem 3.5.26, we recover the result from [BBF72; BF72]:

Theorem 3.5.27 (F. Bertrandias, J. P. Bertrandias, M. J. Ferton, 1972). Let L/K be a
cyclic degree p extension of p-adic fields. Write e for the ramification index of K/Q and a
for the remainder of the ramification jump t of L/K.

1. If a = 0, then OL is AL/K-free.

2. If t < pe
p−1 − 1, then OL is AL/K-free if and only if a | p− 1.

3. If t ≥ pe
p−1 − 1, thenOL is AL/K-free if and only if the length of the continued fraction

expansion of a
p is upper bounded by 4.

6 The ring of integers in extensions of number fields

In this chapter we consider Problem 3.3.12 for extensions of number fields. Recall
that this only makes sense when there is some integral basis, which is achieved
by imposing that the ground ring of integers is a PID, or equivalently, the ground
number field has class number 1.

6.1 Freeness for Galois extensions of number fields

We review what is known on the freeness for the ring of integers for Galois exten-
sions of number fields.

As in the case of extensions of p-adic fields, we start with those results for ex-
tensions of Q. There is an analogue of Theorem 3.5.20 for this case, also found by
Leopoldt.

Theorem 3.6.1 (Leopoldt, 1959). Let L/Q be an abelian extension of number fields. Then
OL is AL/Q-free.

Let G = Gal(L/Q). We know that AL/Q = Z[G] if and only if L/Q is tamely
ramified. In such case, it follows that every tamely ramified abelian extension of
number fields admits a normal integral basis. Unfortunately, Q is the only number
field with this property, due to the following result.

Theorem 3.6.2 ([Gre+99]). Suppose that K is a number field such that every tamely rami-
fied abelian extension of number fields admits a normal integral basis. Then K = Q.
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There is also an affirmative answer for families of non-abelian extensions of Q.

Theorem 3.6.3 (Bergé, 1972). Let L/Q be a Galois extension of number fields with group
G ∼= Dp for a prime p. Then OL is AL/Q-free.

Theorem 3.6.4 (Martinet, 1972). Let L/Q be a Galois extension of number fields with
group G ∼= Q8. Then OL is AL/Q-free.

Very recently, Ferri [Fer24] found characterizations of freeness for the families of
Galois extensions with group isomorphic to A4, S4 and A5.

As for families of number fields with arbitrary ground field, to the best knowl-
edge of the author, the most complete criteria available is on families of Kummer ex-
tensions, which are those Galois extensions whose ground field contain a primitive
n-th root of unity and the exponent of the Galois group divides n. In this direction,
Gómez Ayala [Aya94] found a criterion for the existence of a NIB for tamely ramified
Kummer extensions of number fields with prime degree. Later on, Del Corso and
Rossi generalized such criterion, first for tamely ramified, cyclic and Kummer ex-
tensions of number fields [DR10], and afterwards for tamely ramified and Kummer
extensions of number fields [DR13].

The reader is welcome to consult [Tho10, Section 1] for further results on normal
integral bases of tamely ramified extensions of number fields.

6.2 Local freeness of the ring of integers

The complexity of the behavior of the ring of integers at a number field is consider-
ably greater than in its p-adic analogue. For this reason, it is usual to translate the
problem to the p-adic setting, by localizing by primes at the ground ring of integers.
The notion of local freeness is a generalization of the OK[G]-local freeness of OL, for
a Galois extension L/K of number fields (see Definition 3.3.4).

Let L/K be an H-Galois extension of number fields. For a prime p of K, recall
that we defined OL,p := OL ⊗OK OK,p. Likewise, let us define

AH,p := AH ⊗OK OK,p.

This is an OK-order in Hp
∼= H ⊗K Kp, where Kp is the completion of K by p. On the

other hand, there is a natural AH,p-module structure for OL,p. Thus, we can wonder
whether this module structure is free.

Definition 3.6.5. We say that OL is AH-locally free if OL,p is AH,p-free for every prime p
of K.

As in the Galois case, since OK,p is OK-flat, we have that local freeness is implied
by freeness.

Proposition 3.6.6. If OL is AH-free, then OL is AH-locally free.

6.2.1 Translation of local criteria

We can translate some of the criteria for freeness at extensions of p-adic fields from
Section 4 to this setting. For the following results, fix a prime p of K.

136



Proposition 3.6.7 ([Tru11], Proposition 5.1). If AH,p is the only maximal OK,p-order in
Hp, then OL,p is AH,p-free.

Proof. Since L is H-free by Theorem 3.1.3, we have that Lp is Hp-free. Now, we apply
Proposition 3.4.24 with S = OL,p and A = Hp, and the result follows.

Proposition 3.6.8 ([Tru11], Proposition 5.2). If AH,p is an OK,p-Hopf order in Hp and
OL,p is AH,p-tame, then OL,p is AH,p-free.

Proof. We have that Kp is a p-adic field, Lp is an Hp-Galois extension of Kp and OL,p
is an OK,p-order of Lp. Under the given hypotheses, we can apply Corollary 3.4.34,
and the statement follows.

We now use the results from Section 5.2 to obtain conclusions on completions
by unramified and tamely ramified primes. We call N the permutation subgroup
corresponding to the Hopf-Galois structure H on L/K.

First, we translate Proposition 3.5.13.

Proposition 3.6.9 ([Tru11], Proposition 5.3 and Theorem 5.4). Suppose that L/K is
abelian. If p is unramified in L, then:

1. OL,p[N]G is an OK-Hopf order in H.

2. OL,p is OL,p[N]G-free.

Proof. The proof of Proposition 1 by direct calculation as in [Tru11, Proposition 3.3].
As for 2, we proceed as in Proposition 3.5.13: the element θ := ∑η∈N η is a left
integral of OL,p[N]G and, since p is unramified in L, there is z ∈ OL,p such that
θ · z = 1. Then OL,p is OL,p[N]G-tame, and hence OL,p[N]G-free.

Actually, the same holds without the restriction that L/K is abelian.

Proposition 3.6.10 ([Chi+21], Proposition 11.28). If p is unramified in L̃, then OL,p is
OL̃,p[N]G-free.

Next, we consider Proposition 3.5.14.

Proposition 3.6.11. Suppose that N is abelian. If the rational prime under p does not divide
[L : K], then OL,p is OL̃,p[N]G-free.

Proof. Let M be the only maximal OK-order in H. Then, Mp is the only maximal
OK-order in Hp. Given x ∈ Mp, we have that x ∈ L̃p[N]G, so x ∈ L̃p[N]. Now, we
know that

L̃p[N] ∼= ∏
P|pOL̃

L̃P[N].

In addition, by hypothesis p ∤ |N|, where p is the rational prime under p. Since LP

is a p-adic field, Proposition 3.4.23 gives that OL,P[N] is the integral closure of OK

in L̃P[N]. Then, the image of x under the isomorphism above lies in the product

∏
P|pOL̃

OL̃,P[N] ∼= OL̃,p[N].

Hence x ∈ OL̃,p[N] ∩ L̃p[N]G = OL̃,p[N]G. We deduce that Mp = OL̃,p[N]G. The
result then follows from Proposition 3.4.24.
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There is a class of extensions for which local freeness is immediately deduced.

Definition 3.6.12. Let L/K be a finite Galois extension of number fields. We say that L/K
is domestic if every prime of K lying above a rational prime dividing [L : K] is unramified
in L.

Corollary 3.6.13. Let L/K be a domestic extension of number fields and let H = L̃[N]G be
an abelian Hopf-Galois structure on L/K. Then OL is AH-locally free.

Proof. Let p be a prime of K and let p be the rational prime under p. If p | [L : K],
then p is unramified in L. Thus, by Proposition 3.6.10, we have thatOL,p is AH,p-free.
Otherwise, if p ∤ [L : K], we reach the same conclusion from Proposition 3.6.11.

This situation simplifies even more for tame p-extensions.

Corollary 3.6.14. Let L/K be a tamely ramified Galois p-extension of number fields and let
H = L̃[N]G be an abelian Hopf-Galois structure on L/K. Then OL is AH-locally free.

Proof. Let p be a prime of K. If p is not under p, then the prime under p does not
divide [L : K], so OL,p is AH,p-free by Proposition 3.6.11. Otherwise, if p is under p,
tameness yields that p is unramified in L, and the AH,p-freeness ofOL,p follows from
Proposition 3.6.10.

6.3 Global freeness over the ring of integers

Let L/K be an H-Galois extension of number fields and suppose that both OL and
AH are OK-free. We consider Problem 3.3.12 for this situation. This topic has been
barely explored and most of the results available in this direction have arisen in the
very recent years. So far, this problem has been attacked in two ways.

6.3.1 From local to global freeness through idèles theory

Suppose that OL is AH-locally free. In [Tru16], Truman introduced a strategy that
involves the utilization of the theory of idèles in order to find a characterization for
the AH-freeness. Such a strategy is explained in all detail in [Tru09, Section 2.1.4]. We
present here a summary of the strategy and the main results in literature obtained
by this strategy.

The strategy

The customary setting is the one of OK-orders in a separable K-algebra, but we re-
strict to the case of the associated order AH in H.

Definition 3.6.15. Let L/K be an H-Galois extension of number fields.

1. The Grothendieck group K0(AH) of locally free AH-modules is defined as the abelian
group generated by AH-isomorphism classes of locally free AH-modules [X] with the
restrictions [X⊕Y] = [X] + [Y].

2. The locally free class group Cl(AH) of AH is defined to be the cokernel of the map
Z −→ K0(AH) defined by n 7→ [An

H].
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We can give a simple characterization for freeness in terms of the locally free
class group of AH.

Proposition 3.6.16 ([Tru09], Proposition 2.1.24). Let L/K be an H-Galois extension of
number fields with H abelian and suppose thatOL is AH-locally free. ThenOL is AH-free if
and only if OL has trivial class in Cl(AH).

Now, we may describe Cl(AH) by means of the theory of idèles. All the products
of the form ∏

p
f (p) are taken in primes p of K.

Definition 3.6.17. Let L/K be an H-Galois extension of number fields

1. The idèle group of H is defined as

J(H) = {(ap)p ∈∏
p

H×p | ap ∈ A×H,p for all but finitely many p}.

2. The group of principal idèles is defined as the image of the diagonal embedding
H× ↪→ J(H) defined by a 7→ (a)p.

3. The group of unit idèles is defined by

U(H) = {(ap)p ∈∏
p

H×p | ap ∈ A×H,p for all p}.

Proposition 3.6.18 ([Tru09], Proposition 2.1.25). Let L/K be an H-Galois extension of
number fields with H abelian. Then there is a group isomorphism

Cl(AH) ∼= J(H)/(H∗U(H)).

In practice, one can follow this procedure:

1. Fix an H-normal basis generator x of L.

2. Fix a prime p of K. Let xp be an AH,p-generator of OL,p.

3. Let hp be such that hp · x = xp.

4. We have (hp)p. Study its class in the quotient J(H)/(H∗U(H)).

Results obtained

In the same reference [Tru16], Truman considered tamely ramified Galois extensions
of number fields L/K with group Cp × Cp. The Hopf-Galois structures on such an
extension were determined and explicitly described at [Byo02]. Since every group
of order p2 is abelian, so is every Hopf-Galois structure on L/K. On the other hand,
we know from Corollary 3.6.14 that OL is AH-locally free. Then, Proposition 3.6.16
applies in this situation. In [Tru16, Corollary 5.10], a necessary condition and a
sufficient condition are stated for the AH-freeness of OL in terms of certain ideals
having trivial class in certain ray class groups.

In [Tru12], Truman restricts to the case p = 2 and K = Q, for which his char-
acterization takes a very explicit form. This corresponds to the case in which L is
a tamely ramified biquadratic number field. Write L = Q(

√
m,
√

n) with m, n ∈ Z
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square-free. Let k = mn
d2 , where d = gcd(m, n). Then, L/Q admits three non-classical

Hopf-Galois structures, each of which correspond to a quadratic subfield of L.
Tameness is equivalent to the congruences m ≡ n ≡ 1 (mod 4). Then k ≡

1 (mod 4), and m, n and k can be exchanged indistinctly, and then so can we do
with the non-classical Hopf-Galois structures on L/Q.

Theorem 3.6.19 ([Tru12], Proposition 6.1). Let L = Q(
√

m,
√

n) be a tamely ramified
biquadratic number field and let H be the non-classical Hopf-Galois structure on L/K cor-
responding to Q(

√
m). Then OL is AH-free if and only if at least one of the generalized Pell

equations
x2 + my2 = ±2d

admits some solution (x, y) ∈ Z2.

The techniques presented in this section have been applied also to generalize the
results on the Galois module structure for tamely ramified Kummer extensions of
number fields to the setting of Hopf-Galois extensions. In this direction, Truman
[Tru20] proved a characterization for freeness at tamely ramified extensions of the
form L = K( p

√
a), a ∈ OK, such that ζp /∈ K. His result mimics the corresponding by

Gómez Ayala [Aya94] for the Galois case.
Very recently, in his PhD thesis [Pre24], Prestidge used the same strategy to ob-

tain a characterization for freeness at two classes of non-Galois extensions:

• L = K( p
√

a1, . . . , p
√

ar), p prime, a1, . . . , ar ∈ OK, ζp /∈ K.

• L = K( m
√

a), m ∈ Z odd and square-free, a ∈ OK, ζp /∈ K.

The these results are a Hopf-Galois analogue of the one by Del Corso and Rossi
[DR13] for the Galois case.

6.3.2 An explicit method to describe the associated order

Let L/K be an H-Galois extension of number fields and suppose that OK is a PID.
Rio and the first author [GR22b] introduced an explicit method to produce a basis
of the associated order AH, thanks to which one can translate the question of the
existence of an AH-free generator forOL to the solvability of a certain homogeneous
equation. In some cases, this method is useful in some theoretical aspects; for in-
stance, it gives rise to a proof of Theorem 3.3.17.

The strategy

Let W = {wi}n
i=1 be a K-basis of H. Suppose that one knows an integral basis

B = {γj}n
j=1 of L/K and the action of W on B, that is, the elements m(k)

ij (H, L) ∈ K
such that

wi · γj =
n

∑
k=1

m(k)
ij (H, L)γk.

The matrix of the linear map ρH : H −→ EndK(L) defined by ρH(h)(x) = h · x is an
n2 × n matrix whose coefficients are the m(k)

ij (H, L) arranged in a suitable way.
Now, the assumption that OK is a PID allow to reduce the matrix M(H, L) by

using linear transformations that correspond to isomorphisms of On2

L . This yields
an n× n matrix, whose inverse provides an OK-basis of AH.
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Let V = {vi}n
i=1 be an OK-basis of OL. For a given β ∈ OL, let Mβ(H, L) be

the matrix whose i-th is formed by the coordinates of vi · β with respect to B, where
1 ≤ i ≤ n. Then, β is an AH-free generator of OL if and only if the determinant of
Mβ(H, L) is an invertible element of OL. If one writes β = ∑n

j=1 β jγj with β j ∈ OK,
this reduces to the solvability of an homogeneous equation on the β j.

Results obtained

In [GR22a], Rio and the first author used this method to provide a characterization
for freeness at Galois quartic number fields.

In the case of tamely ramified biquadratic number fields, Theorem 3.6.19 is re-
covered. Acquire the notation therein. We state the criteria for wildly ramified bi-
quadratic extensions. Up to reorderings of m, n and k, there are two possible cases
(according to the form of an integral basis for L): m ≡ 3 (mod 4) and n, k ≡ 2 (mod 4)
on the one hand, m ≡ 1 (mod 4) and n, k ̸≡ 1 (mod 4) on the other. For each
γ ∈ {m, n, k}, let Hγ be the Hopf-Galois structure on L/Q associated to Q(

√
γ).

Theorem 3.6.20 ([GR22a], Thoerem 5.9). Let L be a wildly ramified biquadratic number
field.

1. If m ≡ 3 (mod 4) and n, k ≡ 2 (mod 4), OL is AHm-free (resp. AHn-free, resp. AHk-
free) if and only if at least one of the equations x2 + my2 = ±4d (resp. x2 + ny2 =
±2d, resp. x2 + ky2 = ±2 n

d ) is solvable.

2. If m ≡ 1 (mod 4) and n, k ̸≡ 1 (mod 4), OL is AHm-free if and only if at least one
of the equations x2 + my2 = ±2d is solvable. Moreover, OL is never AHn-free nor
AHk-free.

Now, suppose that L is a quartic cyclic number field. In this case, L/Q admits

a unique non-classical Hopf-Galois structure H. Moreover, L = Q(
√

a(d + b
√

d),
where a ∈ Z is odd and square-free and d is square-free and coprime to a, and of
the form d = b2 + c2 for some c ∈ Z>0.

Theorem 3.6.21 ([GR22a], Theorem 4.3). Let L = Q(
√

a(d + b
√

d) be a quartic cyclic
number field and let H be its non-classical Hopf-Galois structure. ThenOL is AH-free if and
only if the generalized Pell equation x2 − dy2 = b has some integer solution (x, y) ∈ Z2

such that b | x− cy.

In [Gil24a], the first author considered the class of H-Galois extensions L/K for
which there is some finite set S ⊂ L with L = K(S) such that for every h ∈ H and
every α ∈ L, h · α = λα for some λ ∈ K. An element α ∈ L with that property is
called an H-eigenvector. In the case that L/K is Galois and H = Hc, the extension
L/K is Kummer and the elements of S are Kummer generators (see [Gil24a, Theorem
4.7]). Consequently, an extension L/K as above is called H-Kummer. It turns out
that a subclass of those are related with almost classically Galois extensions L/K
with normal closure L̃ such that L̃/M is Kummer in the classical sense (see [Gil24a,
Theorem 1.1]). On the other hand, the method above yields the following criterion.

Theorem 3.6.22 ([Gil24a], Theorem 1.2). Let L/K be an H-Kummer extension associated
to Dedekind domains. If L admits some integral basis which in addition is a generating
system of H-eigenvectors, then OL is AH-free.
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We finish our exposition by stating an application of this result to a concrete
family of number fields. Note that if L/K is an almost classically Galois extension
with complement M and normal closure L̃, then for J = Gal(L̃/K), λ(J) gives L̃/M
an almost classically Galois structure. We shall refer to this as the almost classically
Galois structure for M.

Corollary 3.6.23 ([Gil24a], Proposition 7.3). Let L = Q( n
√

a) with n ∈ Z≥2 and a ∈ Z

square-free. Assume that L ∩Q(ζn) = Q and that OL = Z[ n
√

a]. Then OL is AH-free,
where H is the almost classically Galois structure on L/Q for Q(ζn).

7 Exercises

1. Let n be a square-free integer and let L = Q(
√

n).

(a) Find a necessary and sufficient condition for L to possess a normal inte-
gral basis. Prove its validity.

(b) Justify that OL is AL/Q-free.

2. Let L/K be a Galois extension of p-adic fields with group G. Prove that L/K is
tamely ramified if and only if OK[G] = AL/K.

3. Let L = Q( 3
√

2) and let H be the only Hopf-Galois structure on L/Q.

(a) Let α ∈ L−Q and let f (x) = x3 + a1x2 + a2x + a3 be its minimal polyno-
mial over Q. Prove that α is an H-normal basis generator for L if and only
if a1 ̸= 0 and a2

1 ̸= 3a2.
Hint: Let (αi)

3
i=1 be the roots of f with α1 = α. Use the symmetric identi-

ties of the roots to prove that ∑3
i=1 α2

i = a2
1 − 2a2

2.

(b) Determine explicitly
∫ l

H. Is H unimodular?
Hint: Find a generator w of H as a K-algebra and work with the K-basis
{Id, w, w2} of H. When considering products, use a degree 3 identity
satisfied by w.

4. Let L/K be a (G, G′)-separable H-Galois extension of p-adic fields with normal
closure L̃ and let N be the regular and G-stable subgroup of Perm(G/G′) such
that H = L̃[N]G. Prove that OL̃[N]G ⊆ AH.

5. Let K be a p-adic field with valuation ring OK and let G be a cyclic group with
generator σ. Call f = σ− 1G. Prove that OK[ f ] is an OK-Hopf order in K[G]1.

6. For the following extensions of number or p-adic fields L/K and Hopf-Galois
structure H on L/K, determine whether OL is AH-free or not. In the case that
L/K admits a unique Hopf-Galois structure, H is not specified. You are al-
lowed to use any information at the LMFDB database.

(a) L = Q( 3
√

2) and K = Q; Number field 3.1.108.1.

1In fact, the OK-Hopf orders of K[G] are OK[π
−i
K f ] for 0 ≤ i ≤ ⌊ e

p−1⌋.
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(b) L = Q(
√

3,
√

2), K = Q and H = H3 with the notation of Theorem 3.6.20;
Number field 4.4.2304.1.

(c) L = Q5(α) and K = Q5, where α3 + 5 = 0; p-adic field 5.1.3.2a1.1.

(d) L = Q5(α) and K = Q3, where α6 + 6α2 + 3 = 0; p-adic field 3.1.6.7a2.1.
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[1994], pp. 95–116.

[Bac16] D. Bachiller. “Counterexample to a conjecture about braces”. In: Journal
of algebra 453 [2016], pp. 160–176.

[BBF72] F. Bertrandias, J.-P. Bertrandias, and M.-J. Ferton. “Sur l’anneau des en-
tiers d’une extension cyclique de degré premier d’un corps local.” In: C.
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