List 2: Hopf algebras

- 1. Let G be a group. Prove that the R-group algebra R[G] is an R-Hopf algebra.
- 2. Let H and H' be R-Hopf algebras. Prove that $H \otimes H'$ is an R-Hopf algebra with the following operations:
 - Multiplication map: $m_{H \otimes H'} : (H \otimes H') \otimes (H \otimes H') \longrightarrow H \otimes H', m_{H \otimes H'} ((a \otimes b) \otimes (c \otimes d)) = m_H(a \otimes c) \otimes m_{H'}(b \otimes d).$
 - Unit map: $u_{H\otimes H'}: R \longrightarrow H\otimes H', u_{H\otimes H'}(r) = r1_H\otimes 1_{H'}.$
 - Comultiplication map: $\Delta_{H \otimes H'} = (\operatorname{Id}_{H} \otimes \tau \otimes \operatorname{Id}_{H'}) \circ (\Delta_{H} \otimes \Delta_{H'}) : H \otimes H' \longrightarrow (H \otimes H') \otimes (H \otimes H')$, where $\tau : H \otimes H' \longrightarrow H' \otimes H$ is defined by $\tau(a \otimes b) = b \otimes a$.
 - Counit map: $\varepsilon_{H\otimes H'}: H\otimes H' \longrightarrow R$, $\varepsilon_{H\otimes H'}(a\otimes b) = \varepsilon_H(a)\varepsilon_{H'}(b)$.
 - Coinverse map: $S_{H\otimes H'}: H\otimes H' \longrightarrow H\otimes H', S_{H\otimes H'}(a\otimes b) = S_H(a)\otimes S_{H'}(b).$
- 3. Let G and H be finite groups. Prove that $R[G \times H]$ and $R[G] \otimes R[H]$ are isomorphic as R-Hopf algebras.
- 4. Let A be an R-algebra and let C be an R-coalgebra. Given $f, g \in \text{Hom}_R(C, A)$, the **convolution** of f and g is defined as

$$f * q := m_A \circ (f \otimes q) \circ \Delta_C$$
.

Prove that $(\operatorname{Hom}_R(C,A),*)$ is a monoid (that is, it is associative and admits an identity element).

Hint: It may help write down the definition of f * g in terms of the Sweedler notation for the comultiplication.

5. Let H be an R-Hopf algebra. Prove that the antipode S_H is an anti-homomorphism of R-algebras, that is, $S_H(ab) = S_H(b)S_H(a)$ for all $a, b \in H$ and $S_H(1_H) = 1_H$.

Hint: Use the uniqueness of the inverse of m_H , regarded as an element of the monoid $\operatorname{Hom}_R(H \otimes H, H)$ with the convolution.

6. Let H and H' be R-Hopf algebras, and let $f: H \longrightarrow H'$ be a homomorphism of R-bialgebras. Prove that f is a homomorphism of R-Hopf algebras.

Hint: Use the uniqueness of the inverse of f, regarded as an element of the monoid $\operatorname{Hom}_R(H, H')$ with the convolution.

- 7. Let $f: H \longrightarrow H'$ be a homomorphism of R-Hopf algebras.
 - (a) Prove that $f(G(H)) \subseteq G(H')$.
 - (b) Show that |f(G(H))| divides gcd(|G(H)|, |G(H')|).
- 8. Let H be a finite R-Hopf algebra.
 - (a) Show that H is a left H-module with the multiplication $m_H \colon H \otimes H \longrightarrow H$ as action. Write down the induced right H^* -comodule structure for H.
 - (b) Show that H^* is a right H^* -comodule with the comultiplication $\Delta_{H^*}: H^* \longrightarrow H^* \otimes H^*$ as coaction. Write down the induced left H-module structure for H^* .

9. Let H be a finite R-Hopf algebra and let A be a left H-module algebra. Let $\{h_i, f_i\}_{i=1}^n$ be a projective coordinate system for H and let $\Psi \colon \operatorname{Hom}_R(H,A) \longrightarrow A \otimes H^*$ be the map defined by

$$\Psi(\varphi) = \sum_{i=1}^{n} \varphi(h_i) \otimes f_i, \quad \varphi \in \operatorname{Hom}_R(H, A).$$

Endow $\operatorname{Hom}_R(H,A)$ with the convolution product from Exercise 4. Prove that for every $f,g\in\operatorname{Hom}_R(H,A),$

$$\Psi(\varphi * \psi) = \Psi(\varphi)\Psi(\psi).$$

Hint: Let $\Phi: A \otimes H^* \longrightarrow \operatorname{Hom}_R(H,A)$ be the inverse of Φ . Try to prove that $\varphi * \psi = \Phi(\Psi(\varphi)\Psi(\psi))$.