List 1: Galois theory

- 1. Let K be a field with $\operatorname{char}(K)=0$. Let L and M be finite extensions of K and M/K is Galois.
 - (a) Prove that LM/L is Galois and that there is an embedding $\operatorname{Gal}(LM/L) \hookrightarrow \operatorname{Gal}(M/K)$, which becomes an isomorphism if $L \cap M = K$.
 - (b) Suppose that L/K is also Galois. Show that LM/K is Galois and that there is an embedding $\operatorname{Gal}(LM/K) \hookrightarrow \operatorname{Gal}(L/K) \times \operatorname{Gal}(M/K)$, which becomes an isomorphism if $L \cap M = K$.
- 2. Let L be the splitting field of the polynomial $f(x) = x^4 + 6x^2 3$ over \mathbb{Q} . Determine completely the lattice of intermediate fields of L/\mathbb{Q} and the lattice of subgroups of $Gal(L/\mathbb{Q})$.

Note: L is also the splitting field of the polynomial $x^4 - 3x^2 + 3$ over \mathbb{Q} .

- 3. Let L/K be a Galois extension with group G.
 - (a) Show that G endowed with the Krull topology is a topological group.
 - (b) Prove that the Krull topology on G is discrete if and only if L/K is finite. Deduce that the fundamental theorem of Galois theory at the infinite case is a generalization of the one for the finite case.
- 4. For each $m \in \mathbb{Z}_{>0}$, write L_m for the m-th cyclotomic field; that is, $L_m := \mathbb{Q}(\zeta_m)$, where ζ_m is a primitive m-th root of unity. In addition, for a prime number p, let $L_{p^{\infty}} = \bigcup_{n \in \mathbb{Z}_{>0}} L_{p^n}$ be the union of all the fields L_{p^n} (which is a field because $L_{p^n} \subset L_{p^{n+1}}$ for all $n \in \mathbb{Z}_{>0}$).
 - (a) Prove that L_m/\mathbb{Q} is Galois and that $\operatorname{Gal}(L_m/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$. **Note:** You do not need to prove the result that all the conjugates of ζ_m are ζ_m^k for $1 \leq k \leq m$ and $\gcd(k, m) = 1$.
 - (b) Show that for each intermediate field E of $L_{p^{\infty}}/\mathbb{Q}$ such that E/\mathbb{Q} is finite, there is some $n \in \mathbb{Z}_{>0}$ such that $E \subseteq L_{p^n}$. Deduce that if in addition E/\mathbb{Q} is Galois, then it is abelian.
 - (c) Prove that $L_{p^{\infty}}/\mathbb{Q}$ is Galois and that $\operatorname{Gal}(L_{p^{\infty}}/\mathbb{Q}) \cong (\mathbb{Z}_p)^{\times}$, the multiplicative group of the ring of p-adic integers.

Note: You are allowed to use the definition of \mathbb{Z}_p as a projective limit.