

List 5: Hopf-Galois module theory

1. Let n be a square-free integer and let $L = \mathbb{Q}(\sqrt{n})$.
 - (a) Find a necessary and sufficient condition for L to possess a normal integral basis. Prove its validity.
 - (b) Justify that \mathcal{O}_L is $\mathfrak{A}_{L/\mathbb{Q}}$ -free.
2. Let L/K be a Galois extension of p -adic fields with group G . Prove that L/K is tamely ramified if and only if $\mathcal{O}_K[G] = \mathfrak{A}_{L/K}$.
3. Let $L = \mathbb{Q}(\sqrt[3]{2})$ and let H be the only Hopf-Galois structure on L/\mathbb{Q} .
 - (a) Let $\alpha \in L - \mathbb{Q}$ and let $f(x) = x^3 + a_1x^2 + a_2x + a_3$ be its minimal polynomial over \mathbb{Q} . Prove that α is an H -normal basis generator for L if and only if $a_1 \neq 0$ and $a_1^2 \neq 3a_2$.
Hint: Let $(\alpha_i)_{i=1}^3$ be the roots of f with $\alpha_1 = \alpha$. Use the symmetric identities of the roots to prove that $\sum_{i=1}^3 \alpha_i^2 = a_1^2 - 2a_2$.
 - (b) Determine explicitly \int_H^l . Is H unimodular?
Hint: Find a generator w of H as a K -algebra and work with the K -basis $\{\text{Id}, w, w^2\}$ of H . When considering products, use a degree 3 identity satisfied by w .
4. Let L/K be a (G, G') -separable H -Galois extension of p -adic fields with normal closure \tilde{L} and let N be the regular and G -stable subgroup of $\text{Perm}(G/G')$ such that $H = \tilde{L}[N]^G$. Prove that $\mathcal{O}_{\tilde{L}}[N]^G \subseteq \mathfrak{A}_H$.
5. Let K be a p -adic field with valuation ring \mathcal{O}_K and let G be a cyclic group with generator σ . Call $f = \sigma - 1_G$. Prove that $\mathcal{O}_K[f]$ is an \mathcal{O}_K -Hopf order in $K[G]^1$.
6. For the following extensions of number or p -adic fields L/K and Hopf-Galois structure H on L/K , determine whether \mathcal{O}_L is \mathfrak{A}_H -free or not. In the case that L/K admits a unique Hopf-Galois structure, H is not specified. You are allowed to use any information at the [LMFDB database](#).
 - (a) $L = \mathbb{Q}(\sqrt[3]{2})$ and $K = \mathbb{Q}$; [Number field 3.1.108.1](#).
 - (b) $L = \mathbb{Q}(\sqrt{3}, \sqrt{2})$, $K = \mathbb{Q}$ and $H = H_3$ with the notation of Theorem 3.6.20; [Number field 4.4.2304.1](#).
 - (c) $L = \mathbb{Q}_5(\alpha)$ and $K = \mathbb{Q}_5$, where $\alpha^3 + 5 = 0$; [p-adic field 5.1.3.2a1.1](#).
 - (d) $L = \mathbb{Q}_5(\alpha)$ and $K = \mathbb{Q}_3$, where $\alpha^6 + 6\alpha^2 + 3 = 0$; [p-adic field 3.1.6.7a2.1](#).

¹In fact, the \mathcal{O}_K -Hopf orders of $K[G]$ are $\mathcal{O}_K[\pi_K^{-i}f]$ for $0 \leq i \leq \lfloor \frac{e}{p-1} \rfloor$.