Monogenity of number fields

Laszlo Remete University of Debrecen

Number Theory Seminar Prague, online 12.04.2023 Let K be an algebraic number field of degree n with ring of integers \mathcal{O}_{K} .

K is called **monogenic** if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$. In this case $(1, \alpha, \alpha^2, \ldots, \alpha^{n-1})$ is an integral basis of *K* called **power integral basis**.

The index of a primitive algebraic integer α is

 $I(\alpha) = \left| \mathcal{O}_{\mathcal{K}} : \mathbb{Z}[\alpha] \right|$

K is monogenic $\Leftrightarrow I(\alpha) = 1$ for some $\alpha \in \mathcal{O}_K$.

Some advanteges of the monogenity

B. Kovács: Canonical number systems

There exists canonical number system in K if and only if K is monogenic. I.e. any $\beta \in \mathcal{O}_K$ can be uniquely represented as

$$\beta = \mathbf{a}_0 + \mathbf{a}_1 \alpha + \mathbf{a}_2 \alpha^2 \ldots + \mathbf{a}_r \alpha^r, \qquad \mathbf{a}_i \in \{0, 1, 2 \ldots, |\mathbf{N}(\alpha)| - 1\}$$

if and only if $(1, \alpha, \alpha^2, \dots, \alpha^{n-1})$ is an integral basis of K.

Kummer-Dedekind theorem: Factorization of primes

Let $K = \mathbb{Q}(\alpha)$ and let f(X) be the minimal polynomial of α in $\mathbb{Z}[X]$. If p does not divide the index of α , then

$$(p) = (p, \varphi_1(\alpha))^{e_1} \cdot \ldots \cdot (p, \varphi_g(\alpha))^{e_g},$$

where

$$f(X) \equiv \varphi_1(X)^{e_1} \cdot \ldots \cdot \varphi_g(X)^{e_g} \pmod{p}$$

is the factorization of f(X) modulo p into powers of distinct monic irreducibles.

Investigation of monogenity after Dedekind

Index of the field K:

$$i(\mathcal{K}) := \gcd\{I(\alpha) \mid \mathcal{K} = \mathbb{Q}(\alpha), \alpha \in \mathcal{O}_{\mathcal{K}}\}$$

If $p \mid i(K)$, then p divides the index of any primitive algebraic integer in K, i.e. K is not monogenic.

Dedekind

Let p be a rational prime, and let

$$(p) = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_g^{e_g}$$

be the factorization of (p) into prime ideals in \mathcal{O}_K . Then p does not divide i(K) if and only if there exist distinct monic irreducible polynomials V_1, V_2, \ldots, V_g over \mathbb{F}_p , satisfying deg $V_i = \deg \mathfrak{p}_i$.

 $i(K) > 1 \Rightarrow K$ is not monogenic. The conversion is not true, there are non-monogenic number fields K with i(K) = 1.

Let $K = \mathbb{Q}(\alpha)$, where α is a root of

$$f(X) = X^3 - X^2 - 2X - 8.$$

The factorization of $2 \cdot \mathcal{O}_K$ is

$$(2) = \mathfrak{p}_1 \cdot \mathfrak{p}_2 \cdot \mathfrak{p}_3.$$

The inertia degrees of each \mathfrak{p}_i is one, but there exist only two monic irreducible polynomial over \mathbb{F}_2 of degree one: X and X + 1. The index of the field K is even, so the index of any algebraic integer is divisible by 2. The field is not monogenic.

Factorization of primes after Ore

Let $\varphi_i(X) \in \mathbb{Z}[X]$ be monic lifts of the irreducible factors of f(X) modulo p:

$$f(X) \equiv \varphi_1(X)^{e_1} \cdot \ldots \cdot \varphi_g(X)^{e_g} \pmod{p}.$$

The φ_i -expansion of $f(X) \in \mathbb{Z}[X]$:

$$f(X) = a_0(X) + a_1(X) \cdot \varphi_i(X) + \ldots + a_r(X) \cdot \varphi_i(X)^r,$$

where $\deg(a_j) < \deg(\varphi_i)$. For any polynomial $g(X) = b_n X^n + \ldots + b_1 X + b_0 \in \mathbb{Q}_p[X]$, let

$$\nu_p(g(X)) := \min\{\nu_p(b_i) \mid i = 0, \dots, n\}$$

be the extension of the discrete valuation ν_p to $\mathbb{Q}_p[X]$. The φ_i -Newton polygon of f(X) is the lower convex hull of the points

$$\left\{\left(j,\nu_p(a_j(X))\right)\mid j=0,\ldots,r\right\}$$

The sides of this polygon of negative slopes produce the principal φ_i -Newton polygon $N_{\varphi_i}^-(f)$.

The sides of the principal φ_i -Newton polgons provides us some factors of the principal ideal (p) in $K = \mathbb{Q}(\alpha)$, where α is a root of f(X).

Regularity: To any side S of the principal φ_i -Newton polygons, we attach a polynomial called residual polynomial. If a residual polynomial is separable/square-free, then the factor of (p) corresponding to this side is a prime ideal.

If all of the residual polynomials are separabe, then the polynomial f is called *p*-regular. In this case the sides of the principal Newton polynom provide the shape of the prime ideal decomposition of (p).

Ore

Any number field K can be generated by a root of a p-regular polynomial, i.e. one can always find a polynomial which completely determines the prime ideal decomposition of (p) in K.

Ore's method on Dedekind's example

The sides S_1 , S_2 and S_3 are single sides (with no integer points on them except the endpoints), the residual polynomials attached to them are of degree one: $Y + 1 \in \mathbb{F}_2[Y]$, so they are separable. We obtain:

$$(2) = \mathfrak{p}_1 \cdot \mathfrak{p}_2 \cdot \mathfrak{p}_3.$$

Non-regular example

If α is a root of $f(X) = X^3 + X^2 - 4X + 4$, then α and $(\alpha^2 + \alpha)/2$ generates the same number field, but the minimal polynomial of $(\alpha^2 + \alpha)/2$ is already regular:

All of the sides are of degree 1, so are the residual polynomials and the corresponding prime ideals:

$$(2)=\mathfrak{p}_1\cdot\mathfrak{p}_2^2$$
, where $\deg\mathfrak{p}_1=\deg\mathfrak{p}_2=1$

Non-monogenic number field with i(K) = 1

Let $K = \mathbb{Q}(\alpha)$, where α is a root of $f(X) = X^3 - 175$. An integral basis of K:

$$\left(1, \alpha, \frac{\alpha^2}{5}\right).$$

The index of α is $I(\alpha) = 5$.

Let $\gamma = \frac{\alpha^2}{5}$. It is a root of $X^3 - 245$, and $\mathbb{Q}(\alpha) = K = \mathbb{Q}(\gamma)$. An integral basis of K:

$$\left(1,\gamma,\frac{\gamma^2}{7}\right).$$

The index of γ is $I(\gamma) = 7$.

The gcd of the indices is i(K) = 1. But it can be shown, that the field is not monogenic.

Cubic fields

Let $K = \mathbb{Q}(\alpha)$, where α is a root of $f(X) = X^3 + a_1X^2 + a_2X + a_3$. Let $I(\alpha)$ be the index of α . Then the discriminant of K is

$$D_{K} = rac{D(\alpha)}{I(\alpha)^{2}}.$$

Assume that

$$\beta = \frac{\mathbf{a} + \mathbf{x} \cdot \alpha + \mathbf{y} \cdot \alpha^2}{\mathbf{d}} \in \mathcal{O}_{\mathcal{K}}$$

generates a power integral basis in K. Equivalently, the discriminant of the basis $(1, \beta, \beta^2)$ is equal to the discriminant of K. Let $\beta = \beta^{(1)}, \beta^{(2)}, \beta^{(3)}$ be the conjugates of β . Discriminant of $(1, \beta, \beta^2)$ is

$$D(\beta) = \left(\beta^{(1)} - \beta^{(2)}\right)^2 \cdot \left(\beta^{(1)} - \beta^{(3)}\right)^2 \cdot \left(\beta^{(2)} - \beta^{(3)}\right)^2$$

$$D(\beta) = \frac{1}{d^6} \cdot \left(x \left(\alpha^{(1)} - \alpha^{(2)} \right) + y \left(\alpha^{(1)^2} - \alpha^{(2)^2} \right) \right)^2 \cdot \left(x \left(\alpha^{(1)} - \alpha^{(3)} \right) + y \left(\alpha^{(1)^2} - \alpha^{(3)^2} \right) \right)^2 \cdot \left(x \left(\alpha^{(2)} - \alpha^{(3)} \right) + y \left(\alpha^{(2)^2} - \alpha^{(3)^2} \right) \right)^2 = \\ = \frac{1}{d^6} \cdot \left(\alpha^{(1)} - \alpha^{(2)} \right)^2 \cdot \left(x + y \left(\alpha^{(1)} + \alpha^{(2)} \right) \right)^2 \cdot \left(\alpha^{(1)} - \alpha^{(3)} \right)^2 \cdot \left(x + y \left(\alpha^{(1)} + \alpha^{(3)} \right) \right)^2 \cdot \left(\alpha^{(2)} - \alpha^{(3)} \right)^2 \cdot \left(x + y \left(\alpha^{(2)} + \alpha^{(3)} \right) \right)^2 = \\ = \frac{D(\alpha)}{d^6} \cdot \left(x^3 - 2a_1 x^2 y + (a_1^2 + a_2) x y^2 - (a_1 a_2 - a_3) y^3 \right)^2 \\ \text{Thus } D(\beta) = \frac{D(\alpha)}{I(\alpha)^2}, \text{ iff } (x, y) \text{ is a solution of the index form equation}$$

$$I(x,y) = x^{3} - 2a_{1}x^{2}y + (a_{1}^{2} + a_{2})xy^{2} - (a_{1}a_{2} - a_{3})y^{3} = \pm \frac{d^{3}}{I(\alpha)}$$

Index form in the previous example

Let again $K = \mathbb{Q}(\alpha)$, where α is a root of $f(X) = X^3 - 175$. An integral basis of K: $\left(1, \alpha, \frac{\alpha^2}{5}\right)$. The index of α is $I(\alpha) = 5$. Any algebraic integer can be written in the form

$$\beta = \frac{a + x\alpha + y\alpha^2}{5},$$

where $a, x, y \in \mathbb{Z}$, and a and x are multiples of 5. The corresponding index form:

$$x^3 - 175y^3 = \pm \frac{5^3}{5}$$

Let x = 5z, then β generates a power integral basis, if and only if

$$5z^3 - 7y^3 = \pm 1.$$

This is not solvable modulo 7, so the field K is not monogenic.

Index form equations in general

We can do the same in number fields of any degree. Let K be an algebraic number field of degree n with integral basis $(1, \omega_2, \ldots, \omega_n)$ and set

$$L^{(i)}(X_1,\ldots,X_n)=X_1+X_2\omega_2^{(i)}+\ldots+X_n\omega_n^{(i)},$$

where $\gamma^{(i)}$ $(1 \le i \le n)$ are the conjugates of any $\gamma \in K$. Let D_K be the discriminant of K, and D(L) be the discriminant of L:

$$D(L) = \begin{vmatrix} 1 & L^{(1)} & (L^{(1)})^2 & \dots & (L^{(1)})^{n-1} \\ 1 & L^{(2)} & (L^{(2)})^2 & \dots & (L^{(2)})^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & L^{(n)} & (L^{(n)})^2 & \dots & (L^{(n)})^{n-1} \end{vmatrix}^2$$

Then there is a homogeneous polynomial $I(X_2, X_3, ..., X_n) \in \mathbb{Z}[X_2, ..., X_n]$, for which

$$D(L) = I(X_2, X_3, \ldots, X_n)^2 \cdot D_K.$$

Index and the index form

$$D(L) = I(X_2, X_3, \dots, X_n)^2 \cdot D_K$$

Let $(x_1, x_2, x_3, \dots, x_n) \in \mathbb{Z}^n$ and
 $\beta = x_1 + x_2\omega_2 + \dots + x_n\omega_n \in \mathcal{O}_K.$

The discriminant of β is equal to $D(L(x_2, x_3, ..., x_n))$ by definiton, and we also have

$$D(\beta) = I(\beta)^2 \cdot D_K$$

So the index of β is

$$I(\beta) = |I(x_2, x_3, \ldots, x_n)|.$$

Index form equation

 β generates a power integral basis in *K*, if and only if the *n*-1-tuple (x_2, x_3, \ldots, x_n) is a solution of the index form equation

$$I(X_2, X_3, \ldots, X_n) = \pm 1.$$

Solutions of the index form equations

The index form is a homogeneous polynomial of degree n(n-1)/2 and with n-1 variables.

Large $n \Rightarrow$ extremely complicated.

Győry

Effective upper bound for the solutions of the index form equations \Rightarrow there are finitely many solutions.

Equivalence: $I(\beta) = I(x_1 \pm \beta)$, where $x_1 \in \mathbb{Z}$. Up to this equivalence, there are only finitely many $\beta \in \mathcal{O}_K$ with index 1.

- Method uses Baker's results on the linear forms in the logarithms of algebraic numbers, i.e. the bounds are huge.
- Not applicable in case of infinite parametric families of number fields.

Bilu, Gaál, Győry, Pethő, Pohst, etc.: Fast algoritmic solution in cases of degrees 3,4,5 and 6, also in some relative extensions.

See I.Gaál, Diophantine Equations and Power Integral Bases (2019).

Change of basis

Let $(1, \omega_2, \ldots, \omega_n)$ be an integral basis of $K = \mathbb{Q}(\alpha)$, $\alpha \in \mathcal{O}_K$. Assume that M is the trasition matrix $(1, \alpha, \alpha^2, \ldots, \alpha^{n-1}) \mapsto (1, \omega_2, \ldots, \omega_n)$, i.e

$$I(\alpha) = \det(M^{-1}) \text{ and } \det(M)^2 \cdot D(\alpha) = D_K.$$

Then

$$L^{(i)}(X_1, X_2, \dots, X_n) = (X_1, X_2, \dots, X_n) \cdot (1, \omega_2^{(i)}, \dots, \omega_n^{(i)})^T = (X_1, X_2, \dots, X_n) \cdot M \cdot (1, \alpha^{(i)}, \dots, \alpha^{(i)^{n-1}})^T$$

So with $(Y_1, Y_2, \ldots, Y_n) = (X_1, X_2, \ldots, X_n) \cdot M$, we can write

$$D(L) = I(X_2, X_3, \ldots, X_n)^2 \cdot D_K = I(Y_2, Y_3, \ldots, Y_n)^2 \cdot D(\alpha),$$

where $I(Y_2, Y_3, ..., Y_n)$ is a homogeneous polynomial with rational coefficients:

$$I(X_2, X_3, ..., X_n)^2 \cdot \det(M)^2 = I(Y_2, Y_3, ..., Y_n)^2$$

Non 2-transitive case

$$D(L) = I(X_2, X_3, \dots, X_n)^2 \cdot D_K = I(Y_2, Y_3, \dots, Y_n)^2 \cdot D(\alpha)$$
$$\prod_{1 \le i < j \le n} (L^{(i)} - L^{(j)})^2 = I(Y_2, Y_3, \dots, Y_n)^2 \cdot \prod_{1 \le i < j \le n} (\alpha^{(i)} - \alpha^{(j)})^2$$

If the galois group of the normal closure of ${\boldsymbol{K}}$ is not 2-transitive, then the index form

$$I(X_2, X_3, \ldots, X_n) = \pm \frac{I(Y_2, Y_3, \ldots, Y_n)}{I(\alpha)} = \pm \frac{1}{I(\alpha)} \cdot \prod_{1 \le i < j \le n} \left(\frac{L^{(i)} - L^{(j)}}{\alpha^{(i)} - \alpha^{(j)}} \right)$$

is reducible over \mathbb{Q} . But $I(\underline{X}) \in \mathbb{Z}[\underline{X}]$, so it is reducible over \mathbb{Z} too:

$$I(\underline{X}) = F_1(\underline{X}) \cdot F_2(\underline{X}) \cdot \ldots \cdot F_k(\underline{X}) \in \mathbb{Z}[\underline{X}]$$

Then $I(\underline{X}) = \pm 1$ if and only if $F_i(\underline{X}) = \pm 1$, $(1 \le i \le k)$.

Application of the factorization of the index form

Let $K_t = \mathbb{Q}(\alpha_t)$, where α_t is a root of $X^6 - 36t - 26$, with $t \in \mathbb{Z}$ such that 36t + 26 is square-free. It can be shown that

$$\left(1,\alpha_t,\alpha_t^2,\alpha_t^3,\frac{1+2\alpha_t^2+\alpha_t^4}{3},\frac{\alpha_t+2\alpha_t^3+\alpha_t^5}{3}\right),$$

is an integral basis of K_t and $i(K_t) = 1$. The galois group of $X^6 - 36t - 26$ is isomorphic to the dihedral group D_6 , which is not 2-transitive. Its natural action on the set of pairs of integers

$$\{(i,j) \mid i < j; i,j \in \{1,2,3,4,5,6\}\}$$

has 3 orbits. For example, if $\alpha_t = \sqrt[6]{36t+26}$, ε_6 is a primitive sixth root of unity and $\alpha_t^{(i)} = \varepsilon_6^{i-1} \cdot \alpha_t$, then the 3 orbits:

 $\{(1,4),(2,5),(3,6)\},\$ $\{(1,3),(2,4),(3,5),(4,6),(1,5),(2,6)\},\$ $\{(1,2),(2,3),(3,4),(4,5),(5,6),(1,6)\},\$

thus the index form has 3 factors of degrees 3, 6, 6 respectively:

$$I(\underline{X}) = F_1(\underline{X}) \cdot F_2(\underline{X}) \cdot F_3(\underline{X}).$$

Non-monogenity of an infinite family with field index 1

Explicit calculations show that

$$\frac{9F_3(\underline{X})-F_2(\underline{X})}{4(36t+26)}$$

is an integer polynomial. If K_t is monogenic, then there is a quintuple $\underline{x} = (x_2, x_3, x_4, x_5, x_6) \in \mathbb{Z}^5$, for which

$$F_2(x_2, x_3, x_4, x_5, x_6) = \pm 1, \qquad F_3(x_2, x_3, x_4, x_5, x_6) = \pm 1,$$

so if K_t is monogenic, then

$$4(36t+26) | 9F_3(\underline{x}) - F_2(\underline{x}) = \pm 8, \pm 10$$

There is no $t \in \mathbb{Z}$ for which this can be true, so K_t is not monogenic.

Monogenity of pure sextic fields

Let $K_m = \mathbb{Q}(\alpha_m)$, where $m \in \mathbb{Z}$ is square-free and α_m is a root of $x^6 - m$. Then K_m is monogenic if and only if

 $m \pmod{4} \in \{2,3\}$ and $m \pmod{9} \in \{2,3,4,5,6,7\}.$