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Let K be an algebraic number field of degree n with ring of integers OK .

K is called monogenic if OK = Z[α] for some α ∈ OK . In this case
(1, α, α2, . . . , αn−1) is an integral basis of K called power integral basis.

The index of a primitive algebraic integer α is

I (α) =
∣∣OK : Z[α]

∣∣
K is monogenic ⇔ I (α) = 1 for some α ∈ OK .
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Some advanteges of the monogenity

B. Kovács: Canonical number systems

There exists canonical number system in K if and only if K is monogenic.
I.e. any β ∈ OK can be uniquely represented as

β = a0 + a1α+ a2α
2 . . .+ arα

r , ai ∈ {0, 1, 2 . . . , |N(α)| − 1}

if and only if (1, α, α2, . . . , αn−1) is an integral basis of K .

Kummer-Dedekind theorem: Factorization of primes

Let K = Q(α) and let f (X ) be the minimal polynomial of α in Z[X ]. If p
does not divide the index of α, then

(p) = (p, φ1(α))
e1 · . . . · (p, φg (α))

eg ,

where
f (X ) ≡ φ1(X )e1 · . . . · φg (X )eg (mod p)

is the factorization of f (X ) modulo p into powers of distinct monic
irreducibles.
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Investigation of monogenity after Dedekind

Index of the field K :

i(K ) := gcd{I (α) | K = Q(α), α ∈ OK}

If p | i(K ), then p divides the index of any primitive algebraic integer in
K , i.e. K is not monogenic.

Dedekind
Let p be a rational prime, and let

(p) = pe11 · . . . · pegg

be the factorization of (p) into prime ideals in OK . Then p does not
divide i(K ) if and only if there exist distinct monic irreducible
polynomials V1,V2, . . . ,Vg over Fp, satisfying degVi = deg pi .

i(K ) > 1 ⇒ K is not monogenic. The conversion is not true, there are
non-monogenic number fields K with i(K ) = 1.
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First non-monogenic example

Let K = Q(α), where α is a root of

f (X ) = X 3 − X 2 − 2X − 8.

The factorization of 2 · OK is

(2) = p1 · p2 · p3.

The inertia degrees of each pi is one, but there exist only two monic
irreducible polynomial over F2 of degree one: X and X + 1.
The index of the field K is even, so the index of any algebraic integer is
divisible by 2. The field is not monogenic.
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Factorization of primes after Ore
Let φi (X ) ∈ Z[X ] be monic lifts of the irreducible factors of f (X )
modulo p:

f (X ) ≡ φ1(X )e1 · . . . · φg (X )eg (mod p).

The φi -expansion of f (X ) ∈ Z[X ]:

f (X ) = a0(X ) + a1(X ) · φi (X ) + . . .+ ar (X ) · φi (X )r ,

where deg(aj) < deg(φi ).
For any polynomial g(X ) = bnX

n + . . .+ b1X + b0 ∈ Qp[X ], let

νp(g(X )) := min{νp(bi ) | i = 0, . . . , n}

be the extension of the discrete valuation νp to Qp[X ].
The φi -Newton polygon of f (X ) is the lower convex hull of the points{(

j , νp
(
aj(X )

))
| j = 0, . . . , r

}
The sides of this polygon of negative slopes produce the principal
φi -Newton polygon N−

φi
(f ).

Laszlo Remete Monogenity of number fields



The sides of the principal φi -Newton polgons provides us some factors of
the principal ideal (p) in K = Q(α), where α is a root of f (X ).

Regularity: To any side S of the principal φi -Newton polygons, we attach
a polynomial called residual polynomial. If a residual polynomial is
separable/square-free, then the factor of (p) corresponding to this side is
a prime ideal.

If all of the residual polynomials are separabe, then the polynomial f is
called p-regular. In this case the sides of the principal Newton polgons
provide the shape of the prime ideal decomposition of (p).

Ore
Any number field K can be generated by a root of a p-regular
polynomial, i.e. one can always find a polynomial which completely
determines the prime ideal decomposition of (p) in K .
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Ore’s method on Dedekind’s example

f (X ) = X 3 − X 2 − 2X − 8 ≡ X 2(X + 1) = φ2
1 · φ2 (mod 2)

φ1-Newton polygon of f (X ) φ2-Newton polygon of f (X )

The sides S1,S2 and S3 are single sides (with no integer points on them
except the endpoints), the residual polynomials attached to them are of
degree one: Y + 1 ∈ F2[Y ], so they are separable. We obtain:

(2) = p1 · p2 · p3.

Laszlo Remete Monogenity of number fields



Non-regular example

f (X ) = X 3 + X 2 − 4X + 4 ≡ X 2(X + 1) = φ2
1 · φ2 (mod 2)

φ1-Newton polygon of f (X ) φ2-Newton polygon of f (X )

RS1(Y ) = Y 2 + 1 = (Y + 1)2 ∈ F2[Y ] ⇒ Not separable!
RS2(Y ) = Y + 1 ∈ F2[Y ] ⇒ It is okay
We have 2 possibilities:

(2) = p1 · p2, where deg p1 = 2 and deg p2 = 1 or
(2) = p2

1 · p2, where deg p1 = deg p2 = 1
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If α is a root of f (X ) = X 3 + X 2 − 4X + 4, then α and (α2 + α)/2
generates the same number field, but the minimal polynomial of
(α2 + α)/2 is already regular:

g(X ) = X 3 − 4X 2 + 5X − 4 ≡ X (X + 1)2 = φ1 · φ2
2 (mod 2).

φ1-Newton polygon of f (X ) φ2-Newton polygon of f (X )

All of the sides are of degree 1, so are the residual polynomials and the
corresponding prime ideals:

(2) = p1 · p2
2, where deg p1 = deg p2 = 1
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Non-monogenic number field with i(K ) = 1

Let K = Q(α), where α is a root of f (X ) = X 3 − 175.
An integral basis of K : (

1, α,
α2

5

)
.

The index of α is I (α) = 5.

Let γ = α2

5 . It is a root of X 3 − 245, and Q(α) = K = Q(γ).
An integral basis of K : (

1, γ,
γ2

7

)
.

The index of γ is I (γ) = 7.

The gcd of the indices is i(K ) = 1. But it can be shown, that the field is
not monogenic.
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Cubic fields

Let K = Q(α), where α is a root of f (X ) = X 3 + a1X
2 + a2X + a3. Let

I (α) be the index of α. Then the discriminant of K is

DK =
D(α)

I (α)2
.

Assume that

β =
a+ x · α+ y · α2

d
∈ OK

generates a power integral basis in K . Equivalently, the discriminant of
the basis (1, β, β2) is equal to the discriminant of K .
Let β = β(1), β(2), β(3) be the conjugates of β. Discriminant of (1, β, β2)
is

D(β) =
(
β(1) − β(2)

)2
·
(
β(1) − β(3)

)2
·
(
β(2) − β(3)

)2
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D(β) =
1
d6 ·

(
x
(
α(1) − α(2)

)
+ y

(
α(1)2 − α(2)2

))2

·(
x
(
α(1) − α(3)

)
+ y

(
α(1)2 − α(3)2

))2

·(
x
(
α(2) − α(3)

)
+ y

(
α(2)2 − α(3)2

))2

=

=
1
d6 ·

(
α(1) − α(2)

)2
·
(
x + y

(
α(1) + α(2)

))2

·(
α(1) − α(3)

)2
·
(
x + y

(
α(1) + α(3)

))2

·(
α(2) − α(3)

)2
·
(
x + y

(
α(2) + α(3)

))2

=

=
D(α)

d6 ·
(
x3 − 2a1x

2y + (a2
1 + a2)xy

2 − (a1a2 − a3)y
3
)2

Thus D(β) =
D(α)

I (α)2
, iff (x , y) is a solution of the index form equation

I (x , y) = x3 − 2a1x
2y + (a2

1 + a2)xy
2 − (a1a2 − a3)y

3 = ± d3

I (α)
.
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Index form in the previous example

Let again K = Q(α), where α is a root of f (X ) = X 3 − 175.

An integral basis of K :
(

1, α,
α2

5

)
. The index of α is I (α) = 5.

Any algebraic integer can be written in the form

β =
a+ xα+ yα2

5
,

where a, x , y ∈ Z, and a and x are multiples of 5.
The corresponding index form:

x3 − 175y3 = ±53

5

Let x = 5z , then β generates a power integral basis, if and only if

5z3 − 7y3 = ±1.

This is not solvable modulo 7, so the field K is not monogenic.
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Index form equations in general

We can do the same in number fields of any degree.
Let K be an algebraic number field of degree n with integral basis
(1, ω2, . . . , ωn) and set

L(i)(X1, . . . ,Xn) = X1 + X2ω
(i)
2 + . . .+ Xnω

(i)
n ,

where γ(i) (1 ≤ i ≤ n) are the conjugates of any γ ∈ K . Let DK be the
discriminant of K , and D(L) be the discriminant of L:

D(L) =

∣∣∣∣∣∣∣∣∣
1 L(1) (L(1))2 . . . (L(1))n−1

1 L(2) (L(2))2 . . . (L(2))n−1

...
...

...
. . .

...
1 L(n) (L(n))2 . . . (L(n))n−1

∣∣∣∣∣∣∣∣∣
2

Then there is a homogeneous polynomial
I (X2,X3, . . . ,Xn) ∈ Z[X2, . . . ,Xn], for which

D(L) = I (X2,X3, . . . ,Xn)
2 · DK .

Laszlo Remete Monogenity of number fields



Index and the index form

D(L) = I (X2,X3, . . . ,Xn)
2 · DK

Let (x1, x2, x3, . . . , xn) ∈ Zn and

β = x1 + x2ω2 + . . .+ xnωn ∈ OK .

The discriminant of β is equal to D(L(x2, x3, . . . , xn)) by definiton, and
we also have

D(β) = I (β)2 · DK

So the index of β is

I (β) = |I (x2, x3, . . . , xn)|.

Index form equation

β generates a power integral basis in K , if and only if the n − 1-tuple
(x2, x3, . . . , xn) is a solution of the index form equation

I (X2,X3, . . . ,Xn) = ±1.
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Solutions of the index form equations

The index form is a homogeneous polynomial of degree n(n − 1)/2 and
with n − 1 variables.
Large n ⇒ extremely complicated.

Győry

Effective upper bound for the solutions of the index form equations ⇒
there are finitely many solutions.

Equivalence: I (β) = I (x1 ± β), where x1 ∈ Z. Up to this equivalence,
there are only finitely many β ∈ OK with index 1.

Method uses Baker’s results on the linear forms in the logarithms of
algebraic numbers, i.e. the bounds are huge.
Not applicable in case of infinite parametric families of number fields.

Bilu, Gaál, Győry, Pethő, Pohst, etc.: Fast algoritmic solution in cases
of degrees 3,4,5 and 6, also in some relative extensions.
See I.Gaál, Diophantine Equations and Power Integral Bases (2019).
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Change of basis

Let (1, ω2, . . . , ωn) be an integral basis of K = Q(α), α ∈ OK . Assume
that M is the trasition matrix (1, α, α2, . . . , αn−1) 7→ (1, ω2, . . . , ωn), i.e

I (α) = det(M−1) and det(M)2 · D(α) = DK .

Then

L(i)(X1,X2, . . . ,Xn) = (X1,X2, . . . ,Xn) · (1, ω(i)
2 , . . . , ω

(i)
n )T =

= (X1,X2, . . . ,Xn) ·M · (1, α(i), . . . , α(i)n−1
)T

So with (Y1,Y2, . . . ,Yn) = (X1,X2, . . . ,Xn) ·M, we can write

D(L) = I (X2,X3, . . . ,Xn)
2 · DK = I (Y2,Y3, . . . ,Yn)

2 · D(α),

where I (Y2,Y3, . . . ,Yn) is a homogeneous polynomial with rational
coefficients:

I (X2,X3, . . . ,Xn)
2 · det(M)2 = I (Y2,Y3, . . . ,Yn)

2
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Non 2-transitive case

D(L) = I (X2,X3, . . . ,Xn)
2 · DK = I (Y2,Y3, . . . ,Yn)

2 · D(α)∏
1≤i<j≤n

(
L(i) − L(j)

)2
= I (Y2,Y3, . . . ,Yn)

2 ·
∏

1≤i<j≤n

(
α(i) − α(j)

)2

If the galois group of the normal closure of K is not 2-transitive, then the
index form

I (X2,X3, . . . ,Xn) = ± I (Y2,Y3, . . . ,Yn)

I (α)
= ± 1

I (α)
·

∏
1≤i<j≤n

(
L(i) − L(j)

α(i) − α(j)

)

is reducible over Q. But I (X ) ∈ Z[X ], so it is reducible over Z too:

I (X ) = F1(X ) · F2(X ) · . . . · Fk(X ) ∈ Z[X ]

Then I (X ) = ±1 if and only if Fi (X ) = ±1, (1 ≤ i ≤ k).
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Application of the factorization of the index form
Let Kt = Q(αt), where αt is a root of X 6 − 36t − 26, with t ∈ Z such
that 36t + 26 is square-free. It can be shown that(

1, αt , α
2
t , α

3
t ,

1 + 2α2
t + α4

t

3
,
αt + 2α3

t + α5
t

3

)
,

is an integral basis of Kt and i(Kt) = 1. The galois group of
X 6 − 36t − 26 is isomorphic to the dihedral group D6, which is not
2-transitive. Its natural action on the set of pairs of integers

{(i , j) | i < j ; i , j ∈ {1, 2, 3, 4, 5, 6}}

has 3 orbits. For example, if αt =
6
√

36t + 26, ε6 is a primitive sixth root
of unity and α

(i)
t = εi−1

6 · αt , then the 3 orbits:

{(1, 4), (2, 5), (3, 6)},

{(1, 3), (2, 4), (3, 5), (4, 6), (1, 5), (2, 6)},
{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6)},

thus the index form has 3 factors of degrees 3, 6, 6 respectively:

I (X ) = F1(X ) · F2(X ) · F3(X ).
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Non-monogenity of an infinite family with field index 1
Explicit calculations show that

9F3(X )− F2(X )

4(36t + 26)

is an integer polynomial. If Kt is monogenic, then there is a quintuple
x = (x2, x3, x4, x5, x6) ∈ Z5, for which

F2(x2, x3, x4, x5, x6) = ±1, F3(x2, x3, x4, x5, x6) = ±1,

so if Kt is monogenic, then

4(36t + 26) | 9F3(x)− F2(x) = ±8,±10

There is no t ∈ Z for which this can be true, so Kt is not monogenic.

Monogenity of pure sextic fields

Let Km = Q(αm), where m ∈ Z is square-free and αm is a root of
x6 −m. Then Km is monogenic if and only if

m (mod 4) ∈ {2, 3} and m (mod 9) ∈ {2, 3, 4, 5, 6, 7}.
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