Monogenity of number fields

Laszlo Remete
University of Debrecen

Number Theory Seminar
Prague, online 12.04.2023

Let K be an algebraic number field of degree n with ring of integers \mathcal{O}_{K}.
K is called monogenic if $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_{K}$. In this case ($1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$) is an integral basis of K called power integral basis.

The index of a primitive algebraic integer α is

$$
I(\alpha)=\left|\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right|
$$

K is monogenic $\Leftrightarrow I(\alpha)=1$ for some $\alpha \in \mathcal{O}_{K}$.

Some advanteges of the monogenity

B. Kovács: Canonical number systems

There exists canonical number system in K if and only if K is monogenic.
I.e. any $\beta \in \mathcal{O}_{K}$ can be uniquely represented as

$$
\beta=a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \ldots+a_{r} \alpha^{r}, \quad a_{i} \in\{0,1,2 \ldots,|N(\alpha)|-1\}
$$

if and only if $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right)$ is an integral basis of K.

Kummer-Dedekind theorem: Factorization of primes

Let $K=\mathbb{Q}(\alpha)$ and let $f(X)$ be the minimal polynomial of α in $\mathbb{Z}[X]$. If p does not divide the index of α, then

$$
(p)=\left(p, \varphi_{1}(\alpha)\right)^{e_{1}} \cdot \ldots\left(p, \varphi_{g}(\alpha)\right)^{e_{g}}
$$

where

$$
f(X) \equiv \varphi_{1}(X)^{e_{1}} \cdot \ldots \cdot \varphi_{g}(X)^{e_{g}} \quad(\bmod p)
$$

is the factorization of $f(X)$ modulo p into powers of distinct monic irreducibles.

Investigation of monogenity after Dedekind

Index of the field K :

$$
i(K):=\operatorname{gcd}\left\{I(\alpha) \mid K=\mathbb{Q}(\alpha), \alpha \in \mathcal{O}_{K}\right\}
$$

If $p \mid i(K)$, then p divides the index of any primitive algebraic integer in K, i.e. K is not monogenic.

Dedekind

Let p be a rational prime, and let

$$
(p)=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{g}^{e_{g}}
$$

be the factorization of (p) into prime ideals in \mathcal{O}_{K}. Then p does not divide $i(K)$ if and only if there exist distinct monic irreducible polynomials $V_{1}, V_{2}, \ldots, V_{g}$ over \mathbb{F}_{p}, satisfying $\operatorname{deg} V_{i}=\operatorname{deg} \mathfrak{p}_{i}$.
$i(K)>1 \Rightarrow K$ is not monogenic. The conversion is not true, there are non-monogenic number fields K with $i(K)=1$.

Let $K=\mathbb{Q}(\alpha)$, where α is a root of

$$
f(X)=X^{3}-X^{2}-2 X-8
$$

The factorization of $2 \cdot \mathcal{O}_{K}$ is

$$
(2)=\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} \cdot \mathfrak{p}_{3} .
$$

The inertia degrees of each \mathfrak{p}_{i} is one, but there exist only two monic irreducible polynomial over \mathbb{F}_{2} of degree one: X and $X+1$. The index of the field K is even, so the index of any algebraic integer is divisible by 2 . The field is not monogenic.

Let $\varphi_{i}(X) \in \mathbb{Z}[X]$ be monic lifts of the irreducible factors of $f(X)$ modulo p :

$$
f(X) \equiv \varphi_{1}(X)^{e_{1}} \cdot \ldots \cdot \varphi_{g}(X)^{e_{g}} \quad(\bmod p)
$$

The φ_{i}-expansion of $f(X) \in \mathbb{Z}[X]$:

$$
f(X)=a_{0}(X)+a_{1}(X) \cdot \varphi_{i}(X)+\ldots+a_{r}(X) \cdot \varphi_{i}(X)^{r},
$$

where $\operatorname{deg}\left(a_{j}\right)<\operatorname{deg}\left(\varphi_{i}\right)$.
For any polynomial $g(X)=b_{n} X^{n}+\ldots+b_{1} X+b_{0} \in \mathbb{Q}_{p}[X]$, let

$$
\nu_{p}(g(X)):=\min \left\{\nu_{p}\left(b_{i}\right) \mid i=0, \ldots, n\right\}
$$

be the extension of the discrete valuation ν_{p} to $\mathbb{Q}_{p}[X]$.
The φ_{i}-Newton polygon of $f(X)$ is the lower convex hull of the points

$$
\left\{\left(j, \nu_{p}\left(a_{j}(X)\right)\right) \mid j=0, \ldots, r\right\}
$$

The sides of this polygon of negative slopes produce the principal φ_{i}-Newton polygon $N_{\varphi_{i}}^{-}(f)$.

The sides of the principal φ_{i}-Newton polgons provides us some factors of the principal ideal (p) in $K=\mathbb{Q}(\alpha)$, where α is a root of $f(X)$.

Regularity: To any side S of the principal φ_{i}-Newton polygons, we attach a polynomial called residual polynomial. If a residual polynomial is separable/square-free, then the factor of (p) corresponding to this side is a prime ideal.

If all of the residual polynomials are separabe, then the polynomial f is called p-regular. In this case the sides of the principal Newton polgons provide the shape of the prime ideal decomposition of (p).

Ore

Any number field K can be generated by a root of a p-regular polynomial, i.e. one can always find a polynomial which completely determines the prime ideal decomposition of (p) in K.

Ore's method on Dedekind's example

The sides S_{1}, S_{2} and S_{3} are single sides (with no integer points on them except the endpoints), the residual polynomials attached to them are of degree one: $Y+1 \in \mathbb{F}_{2}[Y]$, so they are separable. We obtain:

$$
(2)=\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} \cdot \mathfrak{p}_{3} .
$$

Non-regular example

$f(X)=X^{3}+X^{2}-4 X+4 \equiv X^{2}(X+1)=\varphi_{1}^{2} \cdot \varphi_{2} \quad(\bmod 2)$

φ_{1}-Newton polygon of $f(X)$
φ_{2}-Newton polygon of $f(X)$
$R_{S_{1}}(Y)=Y^{2}+1=(Y+1)^{2} \in \mathbb{F}_{2}[Y] \Rightarrow$ Not separable!
$R_{S_{2}}(Y)=Y+1 \in \mathbb{F}_{2}[Y] \Rightarrow \mathrm{It}$ is okay
We have 2 possibilities:

- (2) $=\mathfrak{p}_{1} \cdot \mathfrak{p}_{2}$, where $\operatorname{deg} \mathfrak{p}_{1}=2$ and $\operatorname{deg} \mathfrak{p}_{2}=1$ or
- (2) $=\mathfrak{p}_{1}^{2} \cdot \mathfrak{p}_{2}$, where $\operatorname{deg} \mathfrak{p}_{1}=\operatorname{deg} \mathfrak{p}_{2}=1$

If α is a root of $f(X)=X^{3}+X^{2}-4 X+4$, then α and $\left(\alpha^{2}+\alpha\right) / 2$ generates the same number field, but the minimal polynomial of $\left(\alpha^{2}+\alpha\right) / 2$ is already regular:

$$
g(X)=X^{3}-4 X^{2}+5 X-4 \equiv X(X+1)^{2}=\varphi_{1} \cdot \varphi_{2}^{2} \quad(\bmod 2) .
$$

φ_{1}-Newton polygon of $f(X)$

φ_{2}-Newton polygon of $f(X)$

All of the sides are of degree 1 , so are the residual polynomials and the corresponding prime ideals:

$$
(2)=\mathfrak{p}_{1} \cdot \mathfrak{p}_{2}^{2}, \text { where } \operatorname{deg} \mathfrak{p}_{1}=\operatorname{deg} \mathfrak{p}_{2}=1
$$

Non-monogenic number field with $i(K)=1$

Let $K=\mathbb{Q}(\alpha)$, where α is a root of $f(X)=X^{3}-175$.
An integral basis of K :

$$
\left(1, \alpha, \frac{\alpha^{2}}{5}\right) .
$$

The index of α is $I(\alpha)=5$.

Let $\gamma=\frac{\alpha^{2}}{5}$. It is a root of $X^{3}-245$, and $\mathbb{Q}(\alpha)=K=\mathbb{Q}(\gamma)$.
An integral basis of K :

$$
\left(1, \gamma, \frac{\gamma^{2}}{7}\right) .
$$

The index of γ is $I(\gamma)=7$.

The gcd of the indices is $i(K)=1$. But it can be shown, that the field is not monogenic.

Cubic fields

Let $K=\mathbb{Q}(\alpha)$, where α is a root of $f(X)=X^{3}+a_{1} X^{2}+a_{2} X+a_{3}$. Let $I(\alpha)$ be the index of α. Then the discriminant of K is

$$
D_{K}=\frac{D(\alpha)}{I(\alpha)^{2}}
$$

Assume that

$$
\beta=\frac{a+x \cdot \alpha+y \cdot \alpha^{2}}{d} \in \mathcal{O}_{K}
$$

generates a power integral basis in K. Equivalently, the discriminant of the basis $\left(1, \beta, \beta^{2}\right)$ is equal to the discriminant of K.
Let $\beta=\beta^{(1)}, \beta^{(2)}, \beta^{(3)}$ be the conjugates of β. Discriminant of $\left(1, \beta, \beta^{2}\right)$ is

$$
D(\beta)=\left(\beta^{(1)}-\beta^{(2)}\right)^{2} \cdot\left(\beta^{(1)}-\beta^{(3)}\right)^{2} \cdot\left(\beta^{(2)}-\beta^{(3)}\right)^{2}
$$

$$
\begin{aligned}
& D(\beta)=\frac{1}{d^{6}} \cdot\left(x\left(\alpha^{(1)}-\alpha^{(2)}\right)+y\left(\alpha^{(1)^{2}}-\alpha^{(2)^{2}}\right)\right)^{2} \\
&\left(x\left(\alpha^{(1)}-\alpha^{(3)}\right)+y\left(\alpha^{(1)^{2}}-\alpha^{(3)^{2}}\right)\right)^{2} \cdot \\
&\left(x\left(\alpha^{(2)}-\alpha^{(3)}\right)+y\left(\alpha^{(2)^{2}}-\alpha^{(3)^{2}}\right)\right)^{2}= \\
&=\frac{1}{d^{6}} \cdot\left(\alpha^{(1)}-\alpha^{(2)}\right)^{2} \cdot\left(x+y\left(\alpha^{(1)}+\alpha^{(2)}\right)\right)^{2} \cdot \\
&\left(\alpha^{(1)}-\alpha^{(3)}\right)^{2} \cdot\left(x+y\left(\alpha^{(1)}+\alpha^{(3)}\right)\right)^{2} \cdot \\
&\left(\alpha^{(2)}-\alpha^{(3)}\right)^{2} \cdot\left(x+y\left(\alpha^{(2)}+\alpha^{(3)}\right)\right)^{2}= \\
&=\frac{D(\alpha)}{d^{6}} \cdot\left(x^{3}-2 a_{1} x^{2} y+\left(a_{1}^{2}+a_{2}\right) x y^{2}-\left(a_{1} a_{2}-a_{3}\right) y^{3}\right)^{2}
\end{aligned}
$$

Thus $D(\beta)=\frac{D(\alpha)}{l(\alpha)^{2}}$, iff (x, y) is a solution of the index form equation

$$
I(x, y)=x^{3}-2 a_{1} x^{2} y+\left(a_{1}^{2}+a_{2}\right) x y^{2}-\left(a_{1} a_{2}-a_{3}\right) y^{3}= \pm \frac{d^{3}}{I(\alpha)}
$$

Index form in the previous example

Let again $K=\mathbb{Q}(\alpha)$, where α is a root of $f(X)=X^{3}-175$.
An integral basis of K : $\left(1, \alpha, \frac{\alpha^{2}}{5}\right)$. The index of α is $I(\alpha)=5$.
Any algebraic integer can be written in the form

$$
\beta=\frac{a+x \alpha+y \alpha^{2}}{5}
$$

where $a, x, y \in \mathbb{Z}$, and a and x are multiples of 5 .
The corresponding index form:

$$
x^{3}-175 y^{3}= \pm \frac{5^{3}}{5}
$$

Let $x=5 z$, then β generates a power integral basis, if and only if

$$
5 z^{3}-7 y^{3}= \pm 1
$$

This is not solvable modulo 7 , so the field K is not monogenic.

Index form equations in general

We can do the same in number fields of any degree.
Let K be an algebraic number field of degree n with integral basis $\left(1, \omega_{2}, \ldots, \omega_{n}\right)$ and set

$$
L^{(i)}\left(X_{1}, \ldots, X_{n}\right)=X_{1}+X_{2} \omega_{2}^{(i)}+\ldots+X_{n} \omega_{n}^{(i)}
$$

where $\gamma^{(i)}(1 \leq i \leq n)$ are the conjugates of any $\gamma \in K$. Let D_{K} be the discriminant of K, and $D(L)$ be the discriminant of L :

$$
D(L)=\left|\begin{array}{ccccc}
1 & L^{(1)} & \left(L^{(1)}\right)^{2} & \ldots & \left(L^{(1)}\right)^{n-1} \\
1 & L^{(2)} & \left(L^{(2)}\right)^{2} & \ldots & \left(L^{(2)}\right)^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & L^{(n)} & \left(L^{(n)}\right)^{2} & \ldots & \left(L^{(n)}\right)^{n-1}
\end{array}\right|^{2}
$$

Then there is a homogeneous polynomial $I\left(X_{2}, X_{3}, \ldots, X_{n}\right) \in \mathbb{Z}\left[X_{2}, \ldots, X_{n}\right]$, for which

$$
D(L)=I\left(X_{2}, X_{3}, \ldots, X_{n}\right)^{2} \cdot D_{K} .
$$

Index and the index form

$$
D(L)=I\left(X_{2}, X_{3}, \ldots, X_{n}\right)^{2} \cdot D_{K}
$$

Let $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ and

$$
\beta=x_{1}+x_{2} \omega_{2}+\ldots+x_{n} \omega_{n} \in \mathcal{O}_{k} .
$$

The discriminant of β is equal to $D\left(L\left(x_{2}, x_{3}, \ldots, x_{n}\right)\right)$ by definiton, and we also have

$$
D(\beta)=I(\beta)^{2} \cdot D_{K}
$$

So the index of β is

$$
I(\beta)=\left|I\left(x_{2}, x_{3}, \ldots, x_{n}\right)\right| .
$$

Index form equation

β generates a power integral basis in K, if and only if the $n-1$-tuple $\left(x_{2}, x_{3}, \ldots, x_{n}\right)$ is a solution of the index form equation

$$
I\left(X_{2}, X_{3}, \ldots, X_{n}\right)= \pm 1
$$

Solutions of the index form equations

The index form is a homogeneous polynomial of degree $n(n-1) / 2$ and with $n-1$ variables.
Large $n \Rightarrow$ extremely complicated.

Györy

Effective upper bound for the solutions of the index form equations \Rightarrow there are finitely many solutions.

Equivalence: $I(\beta)=I\left(x_{1} \pm \beta\right)$, where $x_{1} \in \mathbb{Z}$. Up to this equivalence, there are only finitely many $\beta \in \mathcal{O}_{K}$ with index 1 .

- Method uses Baker's results on the linear forms in the logarithms of algebraic numbers, i.e. the bounds are huge.
- Not applicable in case of infinite parametric families of number fields.

Bilu, Gaál, Győry, Pethő, Pohst, etc.: Fast algoritmic solution in cases of degrees $3,4,5$ and 6 , also in some relative extensions.
See I.Gaál, Diophantine Equations and Power Integral Bases (2019).

Change of basis

Let $\left(1, \omega_{2}, \ldots, \omega_{n}\right)$ be an integral basis of $K=\mathbb{Q}(\alpha), \alpha \in \mathcal{O}_{K}$. Assume that M is the trasition matrix $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right) \mapsto\left(1, \omega_{2}, \ldots, \omega_{n}\right)$, i.e

$$
I(\alpha)=\operatorname{det}\left(M^{-1}\right) \text { and } \operatorname{det}(M)^{2} \cdot D(\alpha)=D_{K} .
$$

Then

$$
\begin{aligned}
L^{(i)}\left(X_{1}, X_{2}, \ldots, X_{n}\right) & =\left(X_{1}, X_{2}, \ldots, X_{n}\right) \cdot\left(1, \omega_{2}^{(i)}, \ldots, \omega_{n}^{(i)}\right)^{T}= \\
& =\left(X_{1}, X_{2}, \ldots, X_{n}\right) \cdot M \cdot\left(1, \alpha^{(i)}, \ldots, \alpha^{(i)}{ }^{n-1}\right)^{T}
\end{aligned}
$$

So with $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)=\left(X_{1}, X_{2}, \ldots, X_{n}\right) \cdot M$, we can write

$$
D(L)=I\left(X_{2}, X_{3}, \ldots, X_{n}\right)^{2} \cdot D_{K}=I\left(Y_{2}, Y_{3}, \ldots, Y_{n}\right)^{2} \cdot D(\alpha)
$$

where $I\left(Y_{2}, Y_{3}, \ldots, Y_{n}\right)$ is a homogeneous polynomial with rational coefficients:

$$
I\left(X_{2}, X_{3}, \ldots, X_{n}\right)^{2} \cdot \operatorname{det}(M)^{2}=I\left(Y_{2}, Y_{3}, \ldots, Y_{n}\right)^{2}
$$

Non 2-transitive case

$$
\begin{gathered}
D(L)=I\left(X_{2}, X_{3}, \ldots, X_{n}\right)^{2} \cdot D_{K}=I\left(Y_{2}, Y_{3}, \ldots, Y_{n}\right)^{2} \cdot D(\alpha) \\
\prod_{1 \leq i<j \leq n}\left(L^{(i)}-L^{(j)}\right)^{2}=I\left(Y_{2}, Y_{3}, \ldots, Y_{n}\right)^{2} \cdot \prod_{1 \leq i<j \leq n}\left(\alpha^{(i)}-\alpha^{(j)}\right)^{2}
\end{gathered}
$$

If the galois group of the normal closure of K is not 2 -transitive, then the index form

$$
I\left(X_{2}, X_{3}, \ldots, X_{n}\right)= \pm \frac{I\left(Y_{2}, Y_{3}, \ldots, Y_{n}\right)}{I(\alpha)}= \pm \frac{1}{I(\alpha)} \cdot \prod_{1 \leq i<j \leq n}\left(\frac{L^{(i)}-L^{(j)}}{\alpha^{(i)}-\alpha^{(j)}}\right)
$$

is reducible over \mathbb{Q}. But $I(\underline{X}) \in \mathbb{Z}[\underline{X}]$, so it is reducible over \mathbb{Z} too:

$$
I(\underline{X})=F_{1}(\underline{X}) \cdot F_{2}(\underline{X}) \cdot \ldots \cdot F_{k}(\underline{X}) \in \mathbb{Z}[\underline{X}]
$$

Then $I(\underline{X})= \pm 1$ if and only if $F_{i}(\underline{X})= \pm 1,(1 \leq i \leq k)$.

Application of the factorization of the index form

Let $K_{t}=\mathbb{Q}\left(\alpha_{t}\right)$, where α_{t} is a root of $X^{6}-36 t-26$, with $t \in \mathbb{Z}$ such that $36 t+26$ is square-free. It can be shown that

$$
\left(1, \alpha_{t}, \alpha_{t}^{2}, \alpha_{t}^{3}, \frac{1+2 \alpha_{t}^{2}+\alpha_{t}^{4}}{3}, \frac{\alpha_{t}+2 \alpha_{t}^{3}+\alpha_{t}^{5}}{3}\right),
$$

is an integral basis of K_{t} and $i\left(K_{t}\right)=1$. The galois group of $X^{6}-36 t-26$ is isomorphic to the dihedral group D_{6}, which is not 2-transitive. Its natural action on the set of pairs of integers

$$
\{(i, j) \mid i<j ; i, j \in\{1,2,3,4,5,6\}\}
$$

has 3 orbits. For example, if $\alpha_{t}=\sqrt[6]{36 t+26}, \varepsilon_{6}$ is a primitive sixth root of unity and $\alpha_{t}^{(i)}=\varepsilon_{6}^{i-1} \cdot \alpha_{t}$, then the 3 orbits:

$$
\begin{gathered}
\{(1,4),(2,5),(3,6)\}, \\
\{(1,3),(2,4),(3,5),(4,6),(1,5),(2,6)\}, \\
\{(1,2),(2,3),(3,4),(4,5),(5,6),(1,6)\},
\end{gathered}
$$

thus the index form has 3 factors of degrees $3,6,6$ respectively:

$$
I(\underline{X})=F_{1}(\underline{X}) \cdot F_{2}(\underline{X}) \cdot F_{3}(\underline{X}) .
$$

Non-monogenity of an infinite family with field index 1

Explicit calculations show that

$$
\frac{9 F_{3}(\underline{X})-F_{2}(\underline{X})}{4(36 t+26)}
$$

is an integer polynomial. If K_{t} is monogenic, then there is a quintuple $\underline{x}=\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \mathbb{Z}^{5}$, for which

$$
F_{2}\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)= \pm 1, \quad F_{3}\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)= \pm 1
$$

so if K_{t} is monogenic, then

$$
4(36 t+26) \mid 9 F_{3}(\underline{x})-F_{2}(\underline{x})= \pm 8, \pm 10
$$

There is no $t \in \mathbb{Z}$ for which this can be true, so K_{t} is not monogenic.

Monogenity of pure sextic fields

Let $K_{m}=\mathbb{Q}\left(\alpha_{m}\right)$, where $m \in \mathbb{Z}$ is square-free and α_{m} is a root of $x^{6}-m$. Then K_{m} is monogenic if and only if

$$
m(\bmod 4) \in\{2,3\} \text { and } m(\bmod 9) \in\{2,3,4,5,6,7\} .
$$

